精英家教网 > 高中数学 > 题目详情
19.已知数列{an}中,a1=1,且对任意的m,n∈N*,都有am+n=am+an+mn,则$\sum_{i=1}^{2017}$$\frac{1}{{a}_{i}}$=(  )
A.$\frac{2017}{2018}$B.$\frac{2016}{2017}$C.$\frac{2018}{1009}$D.$\frac{2017}{1009}$

分析 令m=1,可得an+1-an=n+1,再利用累加法可求得an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=n+(n-1)+(n-2)+…+3+2+1=$\frac{(n+1)n}{2}$,再利用裂项法得到$\frac{1}{{a}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),从而可求得$\sum_{i=1}^{2017}$$\frac{1}{{a}_{i}}$的值.

解答 解:∵a1=1,且对任意的m,n∈N*,都有am+n=am+an+mn,
∴令m=1,则an+1=a1+an+n=an+n+1,
即an+1-an=n+1,
∴an-an-1=n(n≥2),
…,
a2-a1=2,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=n+(n-1)+(n-2)+…+3+2+1=$\frac{(n+1)n}{2}$,
∴$\frac{1}{{a}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
∴$\sum_{i=1}^{2017}$$\frac{1}{{a}_{i}}$=2[(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{2016}$-$\frac{1}{2017}$)+($\frac{1}{2017}$-$\frac{1}{2018}$)]=2(1-$\frac{1}{2018}$)=$\frac{2017}{1009}$,
故选:D.

点评 本题考查数列递推式,利用累加法求得an=$\frac{(n+1)n}{2}$是关键,考查推理运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知复数$\frac{1}{z}=({-2+i})({2i-1})$,则$\overline z$等于(  )
A.$-\frac{i}{5}$B.$-\frac{1}{5}$C.$\frac{i}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若椭圆${C_1}:\frac{x^2}{{{a_1}^2}}+\frac{y^2}{{{b_1}^2}}=1\;(\;{a_1}>0,{b_1}>0)$,和椭圆${C_2}:\frac{x^2}{{{a_2}^2}}+\frac{y^2}{{{b_2}^2}}=1\;(\;{a_2}>{b_2}>0)$的焦点相同,且a1>a2;给出如下四个结论:其中,所有正确结论的序号为①③
①椭圆C1和椭圆C2一定没有公共点;  
②$\frac{a_1}{a_2}>\frac{b_1}{b_2}$;
③${a_1}^2-{a_2}^2={b_1}^2-{b_2}^2$
④a1-a2<b1-b2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.中国古代内容丰富的一部数学专著《九章算术》中有如下问题:今有女子擅织,日增等尺,七日织四十九尺,第二日、第五日、第八日所织之和为二十七尺,则第九日所织尺数为(  )
A.11B.13C.17D.19

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.命题“?x∈R,ex-x-1<0”的否定是(  )
A.?x∈R,ex-x-1≥0B.?x∈R,ex-x-1>0C.?x∈R,ex-x-1>0D.?x∈R,ex-x-1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,离心率为$\frac{1}{2}$,过点F1的直线l,交椭圆E于A、B两点,过点F2的直线l2交椭圆E于C,D两点,且AB⊥CD,当CD⊥x轴时,|CD|=3.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)求四边形ACBD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|2x-1|+1,不等式f(x)<2的解集为P.
(1)若不等式||x|-2|<1的解集为Q,求证:P∩Q=∅;
(2)若m>1,且n∈P,求证:$\frac{m+n}{1+mn}$>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)的导函数为f'(x),且满足$xf'(x)+f(x)=\frac{e^x}{x}$,f(1)=e,则x>0时,f(x)(  )
A.有极大值,无极小值B.有极小值,无极大值
C.既有极大值又有极小值D.既无极大值也无极小值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知$sin({α-\frac{7π}{6}})=\frac{1}{3}$,则$sin({2α+\frac{7π}{6}})$的值为-$\frac{7}{9}$.

查看答案和解析>>

同步练习册答案