精英家教网 > 高中数学 > 题目详情
已知点P是抛物线y2=4x上一点,设点P到此抛物线的准线的距离为d1,到直线x+2y-12=0的距离为d2,则d1+d2的最小值是(  )
A、5
B、4
C、
11
5
5
D、
11
5
考点:抛物线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:直接把P到准线的距离转化为P到抛物线焦点的距离,求焦点到直线x+2y-12=0的距离得答案.
解答: 解:∵点P到抛物线y2=4x的准线的距离为d1等于P到抛物线y2=4x的焦点的距离|PF|,
则d1+d2的最小值即为F到直线x+2y-12=0的距离.
由抛物线y2=4x得F(1,0),
(d1+d2)min=
|1×1+2×0-12|
12+22
=
11
5
5

故选:C.
点评:本题考查了抛物线的简单几何性质,考查了数学转化思想方法,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面是ABCD是梯形,AD∥BC,AD>BC,∠BAD=90°,PA⊥底面ABCD,PA=AB,点E是PB的中点
(1)证明:PC⊥AE;
(2)若AB=1,AD=
3
,且点A到腰CD的距离为1,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,B为短轴的一个端点,E是椭圆C上的一点,满足OE=OF1+
2
2
OB
,且△EF1F2的周长为2(
2
+1).
(1)求椭圆C的方程;
(2)设点M是线段OF2上的一点,过点F2且与x轴不垂直的直线l交椭圆C于P、Q两点,若△MPQ是以M为顶点的等腰三角形,求点M到直线l距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的两焦点分别为F1(-4,0)、F2(4,0),点P(5,0)在椭圆上,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

把底面半径为8的圆锥放倒在平面内,使圆锥在此平面内绕圆锥顶点S滚动,当这个圆锥在平面内转回到原位置时,圆锥本身滚动了2周,则圆锥的母线长为
 
,体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx-mx(m>0).
(Ⅰ)求函数f(x)的单调性;
(Ⅱ)判断函数f(x)在区间[1,e]上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率e∈[
2
3
3
2
],则双曲线C的两条渐近线夹角的取值范围为(  )
A、[
π
3
π
2
]
B、[
π
4
π
3
]
C、[
π
6
π
4
]
D、[
π
2
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg(x2+ax+1)
(1)若f(x)定义域为R,求实数a的取值范围;
(2)若函数f(x)值域为R,求实数a的取值范围;
(3)若函数f(x)值域为[-2,+∞),求实数a的值;
(4)若函数f(x)在区间(-∞,2]上单调递减,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

P是边长1的正方形ABCD的对角线上一点,且
BP
BD
,则
CP
BP
PD
PD
,则λ的取值范围(  )
A、[[-
1
2
,1]
B、[
2-
2
2
,1]
C、[
1
2
1+
2
2
]
D、[
1-
2
2
1+
2
2
]

查看答案和解析>>

同步练习册答案