精英家教网 > 高中数学 > 题目详情

【题目】为备战2016年奥运会,甲、乙两位射击选手进行了强化训练.现分别从他们的强化训练期间的若干次平均成绩中随机抽取8次,记录如下:

甲:83,90,79,78,94,89,84,83

乙:92,95,80,75,82,81,90,85

(1)画出甲、乙两位选手成绩的茎叶图;

(2)现要从中选派一人参加奥运会封闭集训,从统计学角度,你认为派哪位选手参加合理?简单说明理由;

(3)若将频率视为概率,对选手乙在今后的三次比赛成绩进行预测,记这三次成绩中不低于85分的次数为ξ,求ξ的分布列及均值E(ξ)

【答案】1

2)选派甲合适

3ξ的分布列为

ξ

0

1

2

3

P





∴E(ξ)

【解析】

(1)甲、乙两位选手成绩的茎叶图如图:

(2)因为8.5,又0.270.405,得<,所以选派甲合适.

(3)依题意得,乙不低于8.5分的频率为ξ的可能取值为0,1,2,3.ξB

P(ξk) 3k k 3k0,1,2,3.

所以ξ的分布列为

ξ

0

1

2

3

P





E(ξ)np.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中将底面为直角三角形的直棱柱称为堑堵,将底面为矩形的棱台称为刍童.在如图所示的堑堵与刍童的组合体中, 台体体积公式: 其中分别为台体上、下底面面积, 为台体高.

1)证明:直线 平面

2)若, ,三棱锥的体积,求 该组合体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数已知曲线在原点处的切线相同.

(1)求的单调区间

(2)恒成立的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我校为丰富师生课余活动,计划在一块直角三角形的空地上修建一个占地面积为(平方米)的矩形健身场地,如图,点上,点上,且点在斜边上,已知 米, 米, .设矩形健身场地每平方米的造价为元,再把矩形以外(阴影部分)铺上草坪,每平方米的造价为元(为正常数)

(1)试用表示,并求的取值范围;

(2)求总造价关于面积的函数;

(3)如何选取,使总造价最低(不要求求出最低造价)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 经过椭圆 的左右焦点,且与椭圆在第一象限的交点为,且三点共线,直线交椭圆 两点,且).

(1)求椭圆的方程;

(2)当三角形的面积取得最大值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实数,.

(1)证明:不论为何实数,f(x)均为增函数;

(2)试确定的值,使f(-x)+ f(x)=0成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取极大值,在处取极小值.

(1)若,求函数的单调区间和零点个数;

(2)在方程的解中,较大的一个记为;在方程的解中,较小的一个记为,证明:为定值;

(3)证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班级体育课举行了一次“投篮比赛”活动,为了了解本次投篮比赛学生总体情况,从中抽取了甲乙两个小组样本分数的茎叶图如图所示.

5

6

5

8

6

0

1

3

6

2

4

6

9

7

1

2

7

1

3

8

0

1

8

1

(1)分别求甲乙两个小组成绩的平均数与方差;

(2)分析比较甲乙两个小组的成绩;

(3)从甲组高于70分的同学中,任意抽取2名同学,求恰好有一名同学的得分在[80,90)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某射击运动员每次击中目标的概率都是0.7.现采用随机模拟的方法估计该运动员射击4次,至少击中2次的概率:先由计算器算出0~9之间取整数值的随机数,指定0,1,2表示没有击中目标,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:

5727 0293 7140 9857 0347

4373 8636 9647 1417 4698

0371 6233 2616 8045 6011

3661 9597 7424 6710 4281

据此估计,该射击运动员射击4次至少击中2次的概率为( )

A. 0.8 B. 0.85 C. 0.9 D. 0.95

查看答案和解析>>

同步练习册答案