【题目】已知椭圆
,右顶点
,上顶点为B,左右焦点分别为
,且
,过点A作斜率为
的直线l交椭圆于点D,交y轴于点E.
(1)求椭圆C的方程;
(2)设P为
的中点,是否存在定点Q,对于任意的
都有
?若存在,求出点Q;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知定点
,点A在x轴的非正半轴上运动,点B在y轴上运动,满足
,A关于点B的对称点为M,设点M的轨迹为曲线C.
(1)求C的方程;
(2)已知点
,动直线
与C相交于P,Q两点,求过G,P,Q三点的圆在直线
上截得的弦长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC-A1B1C1中,AA1
AB
AC
2,AB⊥AC,M是棱BC的中点点P在线段A1B上.
(1)若P是线段A1B的中点,求直线MP与直线AC所成角的大小;
(2)若
是
的中点,直线
与平面
所成角的正弦值为
,求线段BP的长度.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】各项为正数的数列
如果满足:存在实数
,对任意正整数n,
恒成立,且存在正整数n,使得
或
成立,则称数列
为“紧密数列”,k称为“紧密数列”
的“紧密度”.已知数列
的各项为正数,前n项和为
,且对任意正整数n,
(A,B,C为常数)恒成立.
(1)当
,
,
时,
①求数列
的通项公式;
②证明数列
是“紧密度”为3的“紧密数列”;
(2)当
时,已知数列
和数列
都为“紧密数列”,“紧密度”分别为
,
,且
,
,求实数B的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x的两个交点间距离为8,f(x)= f1(x)+ f2(x).
(Ⅰ) 求函数f(x)的表达式;
(Ⅱ) 证明:当a>3时,关于x的方程f(x)= f(a)有三个实数解.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆O:x2+y2=3,直线PA与圆O相切于点A,直线PB垂直y轴于点B,且|PB|=2|PA|.
(1)求点P的轨迹E的方程;
(2)过点(1,0)且与x轴不重合的直线与轨迹E相交于P,Q两点,在x轴上是否存在定点D,使得x轴是∠PDQ的角平分线,若存在,求出D点坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,大摆锤是一种大型游乐设备,常见于各大游乐园.游客坐在圆形的座舱中,面向外.通常大摆锤以压肩作为安全束缚,配以安全带作为二次保险.座舱旋转的同时,悬挂座舱的主轴在电机的驱动下做单摆运动.今年五一,小明去某游乐园玩“大摆锤”,他坐在点A处,“大摆锤”启动后,主轴
在平面
内绕点O左右摆动,平面
与水平地面垂直,
摆动的过程中,点A在平面
内绕点B作圆周运动,并且始终保持
,
.已知
,在“大摆锤”启动后,给出下列结论:
①点A在某个定球面上运动;
②线段
在水平地面上的正投影的长度为定值;
③直线
与平面
所成角的正弦值的最大值为
;
④
与水平地面所成角记为
,直线
与水平地面所成角记为
,当
时,
为定值.
其中正确结论的个数为( )
![]()
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂能够生产甲、乙两种产品,已知生产这两种产品每吨所需的煤、电以及每吨的产值分别是:
用煤(t) | 用电(kw) | 产值(千元) | |
甲种产品 | 70 | 20 | 80 |
乙种产品 | 30 | 50 | 110 |
如果该厂每月至多供煤560t,供电450kw,问如何安排生产,才能使该厂月产值最大?月产值是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com