精英家教网 > 高中数学 > 题目详情
8.设函数$f(x)=lnx-\frac{1}{2}a{x^2}+bx(a>0),f'(1)=0$.
(1)用含a的式子表示b;
(2)令F(x)=$f(x)+\frac{1}{2}a{x^2}-bx+\frac{a}{x}(0<x≤3)$,其图象上任意一点P(x0,y0)处切线的斜率$k≤\frac{1}{2}$恒成立,求实数a的取值范围;
(3)若a=2,试求f(x)在区间$[c,c+\frac{1}{2}](c>0)$上的最大值.

分析 (1)先求导,再代值计算即可得到b=a-1;
(2)根据导数的几何意义求出直线的斜率,再根据二次函数的性质求出a的范围;
(3)求导,分类讨论,根据导数和函数的最大值得关系即可求出.

解答 解:(1)f(x)的定义域为(0,+∞),
∵f′(x)=$\frac{1}{x}$-ax+b,
f′(1)=1-a+b=0,
∴b=a-1
(2)F(x)=lnx+$\frac{a}{x}$,
∴F′(x)=$\frac{1}{x}$-$\frac{a}{{x}^{2}}$=$\frac{x-a}{{x}^{2}}$
∴k=F′(x)=$\frac{{x}_{0}-a}{{x}_{0}^{2}}$≤$\frac{1}{2}$在(0,3]上恒成立,
∴a≥(-$\frac{1}{2}$x02+x0max,x0∈(0,3],
当x0=1时,-$\frac{1}{2}$x02+x0的取得最大值$\frac{1}{2}$,
∴a≥$\frac{1}{2}$
(3)当a=2时,f(x)=lnx-x2+x,
∴f′(x)=$\frac{1}{x}$-2x+1=$\frac{-(2x+1)(x-1)}{x}$,
令f′(x)=0,解得x=1或x=-$\frac{1}{2}$(舍去),
当0<x<1时,f′(x)>0,此时f(x)单调递增,
当x>1时,f′(x)<0,此时f(x)单调递减,
当c+$\frac{1}{2}$≤1,即0<c≤$\frac{1}{2}$时,f(x)区间$[c,c+\frac{1}{2}](c>0)$上单调递增,
∴f(x)max=f(c+$\frac{1}{2}$)=ln(c+$\frac{1}{2}$)-(c+$\frac{1}{2}$)2+c+$\frac{1}{2}$=ln(c+$\frac{1}{2}$)+$\frac{1}{4}$-c2
当$\left\{\begin{array}{l}{0<c<1}\\{c+\frac{1}{2}>1}\end{array}\right.$.即$\frac{1}{2}$<c<1时,f(x)在[c,1]上单调递增,在[1,c+$\frac{1}{2}$]上单调递减,
∴f(x)max=f(1)=0,
当c≥1时,f(x)在[c,c+$\frac{1}{2}$]上单调递减,
∴f(x)max=f(c)=lnc-c2+c,
综上所述,当0<c≤$\frac{1}{2}$时,f(x)max=ln(c+$\frac{1}{2}$)+$\frac{1}{4}$-c2
当$\frac{1}{2}$<c<1时,f(x)max=0,
当c≥1时,f(x)max=lnc-c2+c.

点评 本题考查了导数的几何意义以及参数的取值范围和导数在函数的最值的应用,关键是分类讨论,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.抛物线y2=4x上任一点到定直线l:x=-1的距离与它到定点F的距离相等,则该定点F的坐标为(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=(1-ax)ln(1+x)-bx,其中a,b是实数.已知曲线y=f(x)与x轴相切于坐标原点.
(1)求常数b的值;
(2)当0≤x≤1时,关于x的不等式f(x)≥0恒成立,求实数a的取值范围;
(3)求证:$e>{(\frac{1001}{1000})^{1000.4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)已知$sinα+cosα=\frac{7}{13}$,α∈(0,π),求tanα的值;
(2)求$y=sin2x+2\sqrt{2}cos(\frac{π}{4}+x)+3$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow{a}$=(2,1),则与$\overrightarrow{a}$垂直且长度为$\sqrt{5}$的向量$\overrightarrow b$的坐标为(1,-2)或(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2+alnx(a≠0,a∈R).
(1)若对任意实数x∈[1,+∞),使得f(x)≥(a+2)x恒成立,求实数a的取值范围;
(2)证明:对n∈N+,不等式$\frac{1}{ln(n+1)}+\frac{1}{ln(n+2)}+…+\frac{1}{ln(n+2016)}>\frac{2016}{n(n+2016)}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知过函数f(x)=x3+ax2+1的图象上一点B(1,b)的切线的斜率为-3.
(1)求a、b的值;
(2)求A的取值范围,使不等式f(x)≤A-1993对于x∈[-1,4]恒成立;
(3)令g(x)=-f(x)-3x2+tx+1.是否存在一个实数t,使得当x∈(0,1]时,g(x)有最大值1?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知方程x2+y2+2x-6y+n=0表示圆C.
(1)写出此圆的圆心C的坐标和n的范围;
(2)若圆C与圆M:(x-3)2+y2=1相切,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,根据下列条件解三角形,其中有两个解的是(  )
A.a=8,b=10,A=45°B.a=60,b=81,B=60°C.a=7,b=5,A=80°D.a=14,b=20,A=45°

查看答案和解析>>

同步练习册答案