精英家教网 > 高中数学 > 题目详情

如图,已知在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且=2.求证:直线EG,FH,AC相交于一点.

 

 

见解析

【解析】【解析】
∵E,F分别是AB,AD的中点,

∴EF∥BD,EF=BD.

=2,∴GH∥BD,GH=BD,

∴EF∥GH,EF=GH,

∴四边形EFHG是梯形,设两腰EG,FH相交于一点T.

∵EG?平面ABC,FH?平面ACD,∴T∈平面ABC,且T∈平面ACD,又平面ABC∩平面ACD=AC,

∴T∈AC,即直线EG,FH,AC相交于一点T.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-1直线的倾斜角与斜率、直线方程(解析版) 题型:解答题

设直线l的方程为(a+1)x+y+2-a=0(a∈R).

(1)若l在两坐标轴上截距相等,求l的方程;

(2)若l不经过第二象限,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-5直线、平面垂直的判定及性质(解析版) 题型:选择题

如图,在棱长为4的正四面体A-BCD中,M是BC的中点,点P在线段AM上运动(P不与A,M重合),过点P作直线l⊥平面ABC,l与平面BCD交于点Q,给出下列命题:①BC⊥平面AMD;②Q点一定在直线DM上;③VC-AMD=4.

其中正确命题的序号是(  )

A.①② B.①③ C.②③ D.①②③

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:填空题

如图,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D、DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足条件________时,有MN∥平面B1BDD1.

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:选择题

设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是(  )

A.m∥β且l1∥α B.m∥l1且n∥l2

C.m∥β且n∥β D.m∥β且n∥l2

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-3空间点直线平面之间的位置关系(解析版) 题型:填空题

如图所示,ABCD-A1B1C1D1是长方体,AA1=a,∠BAB1=∠B1A1C1=30°,则AB与A1C1所成的角为________,AA1与B1C所成的角为________.

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-2空间几何体的表面积和体积(解析版) 题型:解答题

如图所示,在边长为5+的长方形ABCD中,以A为圆心画一个扇形,以O为圆心画一个圆,M,N,K为切点,以扇形为圆锥的侧面,以圆O为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-7数学归纳法(解析版) 题型:解答题

设数列{an}满足a1=3,an+1=an2-2nan+2,n=1,2,3,…

(1)求a2,a3,a4的值,并猜想数列{an}的通项公式(不需证明);

(2)记Sn为数列{an}的前n项和,试求使得Sn<2n成立的最小正整数n,并给出证明.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-4基本不等式(解析版) 题型:选择题

已知a>0,b>0,若不等式≤0恒成立,则m的最大值为(  )

A.4 B.16 C.9 D.3

 

查看答案和解析>>

同步练习册答案