精英家教网 > 高中数学 > 题目详情
,函数的导函数是,且是奇函数,则的值为(    )
A.B.C.D.
A

试题分析:∵,要是奇函数,则
,即,∴,故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知a>0,函数.
(1)若,求函数的极值,
(2)是否存在实数,使得成立?若存在,求出实数的取值集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若的极值点,求实数的值;
(2)若上为增函数,求实数的取值范围;
(3)当时,方程有实根,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数为常数)
(Ⅰ)讨论的单调性;
(Ⅱ)若,证明:当时,.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(1)若,求函数的极值;
(2)若函数上单调递减,求实数的取值范围;
(3)在函数的图象上是否存在不同的两点,使线段的中点的横坐标与直线的斜率之间满足?若存在,求出;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)讨论函数的单调区间;
(2)已知对定义域内的任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)设,求的单调区间;
(Ⅱ) 设,且对于任意.试比较的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)讨论函数的单调性;
(2)若函数的图象在点处的切线的倾斜角为,对于任意的
 ,函数在区间 上总不是单调函数,
求实数的取值范围;
(3)求证 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极值.
(1)求的值;
(2)求的单调区间;
(3)若当时恒有成立,求实数c的取值范围.

查看答案和解析>>

同步练习册答案