精英家教网 > 高中数学 > 题目详情
已知函数处取得极值.
(1)求的值;
(2)求的单调区间;
(3)若当时恒有成立,求实数c的取值范围.
(1)
(2),在上递减。
(3)

试题分析:(1)由  2分
解得:  4分
(2)
上递减  8分
(3)由(2)可知的最大值在中产生,  10分
  12分

得: 14分
点评:中档题,本题属于导数应用中的基本问题,利用导数研究函数的单调性、最值,利用“表解法”表述更为清晰。不等式恒成立问题,一般要转化成研究函数的最值,建立不等式求解。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求曲线在点处的切线方程;
(2)直线为曲线的切线,且经过原点,求直线的方程及切点坐标

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)若函数图像上的点到直线距离的最小值为,求的值;
(2)关于的不等式的解集中的整数恰有3个,求实数的取值范围;
(3)对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数
“分界线”.设,试探究是否存在“分界线”?若存在,求出“分界线”的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

_________________;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数 在点处的切线斜率的最小值是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

关于的函数的极值点的个数有(   )
A.2个B.1个C.0个D.由确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设定函数 (>0),且方程的两个根分别为1,4。
(Ⅰ)当=3且曲线过原点时,求的解析式;
(Ⅱ)若无极值点,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的单调递增区间;
(2)若不等式在区间(0,+上恒成立,求的取值范围;
(3)求证: 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,函数的导函数是,且是奇函数,则的值为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案