分析 设A(x1,y1),B(x2,y2),由三角函数的定义得:cosα+cosβ=x1+x2,由此利用韦达定理能求出cosα+cosβ的值.
解答
解:设A(x1,y1),B(x2,y2)
由三角函数的定义得:cosα+cosβ=x1+x2,
由$\left\{\begin{array}{l}{3x+y-2=0}\\{{x}^{2}+{y}^{2}=1}\end{array}\right.$,消去y得:10x2-12x+3=0
则x1+x2=$\frac{6}{5}$,
即cosα+cosβ=$\frac{6}{5}$.
故答案为:$\frac{6}{5}$.
点评 本题考查两个角的余弦值之和的求法,是基础题,解题时要认真审题,注意韦达定理和三角函数定义的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 225x-64y+4=0或x=0 | B. | 3x-4y+4=0 | ||
| C. | x=0 | D. | 3x-4y+4=0或x=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 序号 | 科研费用支出xi | 利润yi | xiyi | xi2 |
| 1 | 5 | 31 | 155 | 25 |
| 2 | 11 | 40 | 440 | 121 |
| 3 | 4 | 30 | 120 | 16 |
| 4 | 5 | 34 | 170 | 25 |
| 5 | 3 | 25 | 75 | 9 |
| 6 | 2 | 20 | 40 | 4 |
| 合计 | 30 | 180 | 1 000 | 200 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com