精英家教网 > 高中数学 > 题目详情
14.定义在[-1,1]上的偶函数y=f(x)满足:对于任意的x1,x2∈[0,1](x1≠x2),都有(x2-x1)(f(x2)-f(x1))>0,则满足f(2x-1)≤f(2x)的x的取值范围是(  )
A.[$\frac{1}{4}$,$\frac{1}{2}$]B.[$\frac{1}{4}$,1]C.[0,1]D.[0,$\frac{1}{2}$]

分析 先由(x1-x2)[f(x1)-f(x2)]>0,得到其为增函数,再结合其为偶函数即可得到结论.

解答 解:因为对于任意的x1,x2∈[0,1](x1≠x2),都有(x2-x1)(f(x2)-f(x1))>0,
所以:f(x)在[0,1]上递增,
又因为f(x)是偶函数,f(2x-1)≤f(2x)
所以0≤|2x-1|≤|2x|≤1,
所以$\frac{1}{4}$≤x≤$\frac{1}{2}$,
故选:A.

点评 本题主要考查函数单调性与奇偶性的综合问题.解决本题的关键在于由对于任意的x1,x2∈[0,1](x1≠x2),都有(x2-x1)(f(x2)-f(x1))>0,得到其为增函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|x2-6x+8<0},B={x|(x-a)(x-3a)<0}.
(1)若A⊆(A∩B),求a的取值范围;
(2)若A∩B=∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.画出下列函数的图象,并根据图象指出函数的单调区间和值域.
(1)f(x)=$\left\{\begin{array}{l}{x,-1<x<1}\\{-x,x<-1或x>1}\end{array}\right.$;
(2)g(x)=(x+1)•|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列给出的对象组成的整体能构成集合的个数是(  )
①与3相差不大于2的实数.
②中国大城市.
③在平面直角坐标系中非常接近原点的点.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若$\frac{3}{a}+\frac{1}{b}=1$,a,b∈R*,当a•b有最小值12时,a=6,b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知D、E、F分别是△ABC的中点,写出以A、B、C、D、E、F这六点中任意两个点为起点和终点的向量中与$\overrightarrow{AB}$平行的所有向量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数y=${2}^{{x}^{2}-6x+7}$.
(1)求函数的定义域、值域;
(2)确定函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.定义在R上的偶函数f(x),当x≥0时,f(x)=x2-x
(1)求函数f(x)的解析式;
(2)求函数f(x)的最小值;
(3)根据图象求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数f(x)=$\frac{ax+1}{x+2}$(a为常数).
(1)若a=1,证明:f(x)在(-2,+∞)上为单调递增函数;
(2)当x∈(-1,2)时,f(x)的值域为(-$\frac{3}{4}$,3),求a的值.

查看答案和解析>>

同步练习册答案