分析 求出集合A中不等式的解集,确定出A,
(1)分a大于0与a小于0两种情况考虑,求出A为B子集时a的范围即可;
(2)要满足A与B交集为空集,分a大于0,小于0和等于0三种情况考虑,求出a的范围即可.
解答 解:由集合A中的不等式x2-6x+8<0,解得:2<x<4,
即A={x|2<x<4},
(1)当a>0时,B={x|a<x<3a},
由A⊆(A∩B),可得A⊆B,得到$\left\{\begin{array}{l}{a≤2}\\{3a≥4}\end{array}\right.$,解得:$\frac{4}{3}$≤a≤2;
当a<0时,B={x|3a<x<a},由A⊆B,得到$\left\{\begin{array}{l}{3a≤2}\\{a≥4}\end{array}\right.$,无解,
当a=0时,B=∅,不合题意,
∴A⊆B时,实数a的取值范围为$\frac{4}{3}$≤a≤2;
(2)要满足A∩B=∅,
分三种情况考虑:
当a>0时,B={x|a<x<3a},由A∩B=∅,得到a≥4或3a≤2,解得:0<a≤$\frac{2}{3}$或a≥4;
当a<0时,B={x|3a<x<a},由A∩B=∅,得到3a≥4或a≤2,解得:a<0;
当a=0时,B=∅,满足A∩B=∅,
综上所述,a≤$\frac{2}{3}$或a≥4.
点评 此题考查了交集及其运算,以及集合的包含关系判断及应用,熟练掌握交集的定义是解本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | △x=△x1+△x2 | B. | △x=△x1-△x2 | C. | △x=|△x1|+|△x2| | D. | △x=|△x1|-|△x2| |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{1}{4}$,$\frac{1}{2}$] | B. | [$\frac{1}{4}$,1] | C. | [0,1] | D. | [0,$\frac{1}{2}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com