精英家教网 > 高中数学 > 题目详情
4.已知集合A={x|x2-6x+8<0},B={x|(x-a)(x-3a)<0}.
(1)若A⊆(A∩B),求a的取值范围;
(2)若A∩B=∅,求a的取值范围.

分析 求出集合A中不等式的解集,确定出A,
(1)分a大于0与a小于0两种情况考虑,求出A为B子集时a的范围即可;
(2)要满足A与B交集为空集,分a大于0,小于0和等于0三种情况考虑,求出a的范围即可.

解答 解:由集合A中的不等式x2-6x+8<0,解得:2<x<4,
即A={x|2<x<4},
(1)当a>0时,B={x|a<x<3a},
由A⊆(A∩B),可得A⊆B,得到$\left\{\begin{array}{l}{a≤2}\\{3a≥4}\end{array}\right.$,解得:$\frac{4}{3}$≤a≤2;
当a<0时,B={x|3a<x<a},由A⊆B,得到$\left\{\begin{array}{l}{3a≤2}\\{a≥4}\end{array}\right.$,无解,
当a=0时,B=∅,不合题意,
∴A⊆B时,实数a的取值范围为$\frac{4}{3}$≤a≤2;
(2)要满足A∩B=∅,
分三种情况考虑:
当a>0时,B={x|a<x<3a},由A∩B=∅,得到a≥4或3a≤2,解得:0<a≤$\frac{2}{3}$或a≥4;
当a<0时,B={x|3a<x<a},由A∩B=∅,得到3a≥4或a≤2,解得:a<0;
当a=0时,B=∅,满足A∩B=∅,
综上所述,a≤$\frac{2}{3}$或a≥4.

点评 此题考查了交集及其运算,以及集合的包含关系判断及应用,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知集合{1,2}⊆M⊆{1,2,4,5},则集合M的个数为(  )
A.5B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线的顶点坐标为(3,-2),且与x轴的两个交点的距离为4.
(1)求这个二次函数的解析式;
(2)写出抛物线的开口方向、对称轴、顶点坐标及最值;
(3)x为何值时,y随x的增大而减小?x为何值时,y随x的增大而增大?
(4)x为何值时,y>0?x为何值时,y=0?x为何值时,y<0?
(5)当2≤x≤6时,求函数的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.物体A运动到B的位移为△x,从A运动到C的位移为△x1,从C运动到B的位移为△x2.下列关系正确的是(  )
A.△x=△x1+△x2B.△x=△x1-△x2C.△x=|△x1|+|△x2|D.△x=|△x1|-|△x2|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.对于函数f(x)定义域中任意的x1,x2(x1≠x2)有如下结论
①f(x1+x2)=f(x1)•f(x2);
②f(x1•x2)=f(x1)+f(x2);
③$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0;
④$\frac{f({x}_{1})-1}{{x}_{1}}$<0(x1≠0);
⑤f(-x1)=$\frac{1}{f({x}_{1})}$.
当$f(x)={(\frac{1}{2})^x}$时,上述结论中正确的序号是①③④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A={x|x2-6x+8<0},B={x|x2-4a+3a2<0}.
(1)若A⊆B,求实数a的取值范围;
(2)若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a≥1,函数f(x)=4x+$\frac{9}{x+1}$+4(x∈[0,1]),g(x)=x3-3a2x-2a+16(x∈[0,1]).
(1)求f(x)和g(x)的值域;
(2)若?x1∈[0,1],?x2∈[0,1],使得g(x2)=f(x1)成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=x2-4ax+2a+6(a∈R).
(1)若函数的值域为[0,+∞),求实数a的值所组成的集合;
(2)若函数f(x)的值均为非负实数,求实数a的值所组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.定义在[-1,1]上的偶函数y=f(x)满足:对于任意的x1,x2∈[0,1](x1≠x2),都有(x2-x1)(f(x2)-f(x1))>0,则满足f(2x-1)≤f(2x)的x的取值范围是(  )
A.[$\frac{1}{4}$,$\frac{1}{2}$]B.[$\frac{1}{4}$,1]C.[0,1]D.[0,$\frac{1}{2}$]

查看答案和解析>>

同步练习册答案