精英家教网 > 高中数学 > 题目详情
已知函数f(x)=3sin
x2
,如果存在实数x1,x2,使得对任意的实数x,都有f(x1)≤f(x)≤f(x2)则|x1-x2|的最小值为
分析:先根据f(x1)≤f(x)≤f(x2)对任意实数x成立,可得x1、x2是函数f(x)对应的最大、最小值的x,进而可得|x1-x2|一定是
T
2
的整数倍,然后求出函数f(x)的最小正周期为4π,根据|x1-x2|=n×
T
2
=2nπ可求出求出最小值.
解答:解:∵f(x1)≤f(x)≤f(x2),
∴x1、x2是函数f(x)对应的最大、最小值的x,
故|x1-x2|一定是
T
2
的整数倍,
∵函数f(x)=3sin
x
2
的最小正周期T=
1
2
=4π,
∴|x1-x2|=n×
T
2
=2nπ(n>0,且n∈Z),
则|x1-x2|的最小值为2π.
故答案为:2π
点评:此题考查了三角函数的周期性及其求法,以及正弦函数的最值,是一道基础知识的简单应用题.高考对三角函数的考查以基础题为主,要强化基础知识的夯实.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}(  )
A、是等比数列B、是等差数列C、从第2项起是等比数列D、是常数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有满足条件的m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x|x<a}.
(1)若A⊆B,求实数a的取值范围;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
a-1
(a≠1)在区间(0,4]上是增函数,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2log2x,g(x)=log2x.
(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]•g(x)的值域;
(2)如果对任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案