精英家教网 > 高中数学 > 题目详情
7.已知双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1的离心率为$\frac{{\sqrt{6}}}{2}$.

分析 双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1中a=2,b=$\sqrt{2}$,c=$\sqrt{6}$,即可求出双曲线的离心率.

解答 解:双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1中a=2,b=$\sqrt{2}$,c=$\sqrt{6}$,
∴e=$\frac{c}{a}$=$\frac{{\sqrt{6}}}{2}$,
故答案为$\frac{{\sqrt{6}}}{2}$.

点评 本题考查双曲线的离心率,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.在△ABC中,能判断三角形是锐角三角形的条件是(  )
A.sinA+sinB=0.2B.$\overrightarrow{AB}$•$\overrightarrow{BC}$<0
C.b=3,c=3$\sqrt{3}$,B=30°D.tanA+tanB+tanC>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=3sin(2x-$\frac{π}{6}$)的单调增区间是[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.由直线3x-4y+1=0上的一点向圆C:x2+y2-6x+8=0引切线,则切线长的最小值为(  )
A.1B.2C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)=$\left\{{\begin{array}{l}{1-{x^2}},x≤1\\{{x^2}-2x-2},x>1\end{array}}\right.$,则$f[{\frac{1}{f(2)}}]$的值是(  )
A.$\frac{1}{16}$B.$-\frac{3}{4}$C.$\frac{3}{4}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若0<α<β<π,则α-β的范围是(-π,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在三棱柱ABC-A1B1C1中,侧棱垂直于底面,$AB=BC=CA=\sqrt{3}$,$A{A_1}=2\sqrt{2}$,则该三棱柱外接球的表面积等于12π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数$f(x)=\left\{\begin{array}{l}|{l}o{g_2}x|,0<x≤4\\-x+6,x>4\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是(  )
A.(0,1)B.(1,2)C.(1,4)D.(4,6)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知(1-x-2y)2的展开式中不含x项的系数和为m,则${∫}_{1}^{2}$xmdx=$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案