精英家教网 > 高中数学 > 题目详情
2.已知f(x)=$\left\{{\begin{array}{l}{1-{x^2}},x≤1\\{{x^2}-2x-2},x>1\end{array}}\right.$,则$f[{\frac{1}{f(2)}}]$的值是(  )
A.$\frac{1}{16}$B.$-\frac{3}{4}$C.$\frac{3}{4}$D.8

分析 先求出f(2)=-2,从而$f[{\frac{1}{f(2)}}]$=f(-$\frac{1}{2}$),由此能求出结果.

解答 解:∵f(x)=$\left\{{\begin{array}{l}{1-{x^2}},x≤1\\{{x^2}-2x-2},x>1\end{array}}\right.$,
∴f(2)=22-2×2-2=-2,
∴$f[{\frac{1}{f(2)}}]$=f(-$\frac{1}{2}$)=1-(-$\frac{1}{2}$)2=$\frac{3}{4}$.
故选:C.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知:向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$,下列命题中真命题的是(  )
①若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$或$\overrightarrow{a}$=-$\overrightarrow{b}$
②若$\overrightarrow{AB}$=$\overrightarrow{DC}$,则A、B、C、D是一个平行四边形的四个顶点;
③若$\overrightarrow{a}$=$\overrightarrow{b}$,$\overrightarrow{b}$=$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{c}$     
 ④若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$.
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,若a=b=1,c=$\sqrt{3}$,则角C(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求和:(1)Sn=(2-3×$\frac{1}{5}$)+[4-3×($\frac{1}{5}$)2]+[6-3×($\frac{1}{5}$)3]+…+[2n-3×($\frac{1}{5}$)n];
(2)Sn=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+$\frac{1}{4×5}$+…+$\frac{1}{n×(n+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.四棱锥P-ABCD的四条侧棱长相等,底面ABCD为正方形,M为PB的中点,求证:
(Ⅰ)PD∥平面ACM;
(Ⅱ)PO⊥平面ABCD;
(Ⅲ)若PA=AB,求异面直线PD与CM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1的离心率为$\frac{{\sqrt{6}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设数列{an}的前n项和Sn满足Sn=$\frac{3}{2}({{a_n}-1})$.
(1)求证数列{an}是等比数列并求通项公式an
(2)设bn=2n-1,cn=an•bn,Tn为{cn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知曲线y2=ax与其关于点(1,1)对称的曲线有两个不同的交点A和B,如果过这两个交点的直线的倾斜角是45°,则实数a的值是(  )
A.1B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知tanα=2,其中α是第三象限的角,则sin(π+α)等于(  )
A.-$\frac{{\sqrt{5}}}{5}$B.$\frac{{\sqrt{5}}}{5}$C.-$\frac{{2\sqrt{5}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

同步练习册答案