精英家教网 > 高中数学 > 题目详情
4.已知:向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$,下列命题中真命题的是(  )
①若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$或$\overrightarrow{a}$=-$\overrightarrow{b}$
②若$\overrightarrow{AB}$=$\overrightarrow{DC}$,则A、B、C、D是一个平行四边形的四个顶点;
③若$\overrightarrow{a}$=$\overrightarrow{b}$,$\overrightarrow{b}$=$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{c}$     
 ④若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$.
A.B.C.D.

分析 利用向量的模相等以及向量共线判断选项即可.

解答 解:对于①,|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$或$\overrightarrow{a}$=-$\overrightarrow{b}$,显然不正确,
对于②,$\overrightarrow{AB}$=$\overrightarrow{DC}$,则A、B、C、D是一个平行四边形的四个顶点,可能四个点在一条直线上.不正确;
对于③,若$\overrightarrow{a}$=$\overrightarrow{b}$,$\overrightarrow{b}$=$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{c}$,正确;
对于④若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$,如果$\overrightarrow{b}$=$\overrightarrow{0}$,则判断是不正确的;
故选:C.

点评 本题考查向量的基本知识的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.解不等式:
(1)x(x+2)>x(3-x)+1;
(2)$\frac{1-x}{2+x}$≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数y=f(x)的图象如图所示,设函数y=f(x)从-1到1的平均变化率为v1,从1到2的平均变化率为v2,则v1与v2的大小关系为(  )
A.v1>v2B.v1=v2C.v1<v2D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.复数z=sin$\frac{π}{3}$-icos$\frac{π}{6}$,则|z|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}中,a3+a2=5,a4=7.
(1)求数列{an}的通项公式;
(2)求该数列前15项的和S15的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,能判断三角形是锐角三角形的条件是(  )
A.sinA+sinB=0.2B.$\overrightarrow{AB}$•$\overrightarrow{BC}$<0
C.b=3,c=3$\sqrt{3}$,B=30°D.tanA+tanB+tanC>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.△ABC中,角A,B,C的对边分别为a,b,c,且a=0.5c+bcosC,
(1)求角B的大小;
(2)若△ABC的面积为$\sqrt{3}$,b=$\sqrt{13}$,求a+c 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题:“指数函数y=ax(a>0)是增函数,而y=($\frac{1}{2}$)x是指数函数,所以y=($\frac{1}{2}$)x是增函数”结论是错误的,其原因是(  )
A.大前提错误B.小前提错误C.推理形式错误D.以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)=$\left\{{\begin{array}{l}{1-{x^2}},x≤1\\{{x^2}-2x-2},x>1\end{array}}\right.$,则$f[{\frac{1}{f(2)}}]$的值是(  )
A.$\frac{1}{16}$B.$-\frac{3}{4}$C.$\frac{3}{4}$D.8

查看答案和解析>>

同步练习册答案