精英家教网 > 高中数学 > 题目详情
12.复数z=sin$\frac{π}{3}$-icos$\frac{π}{6}$,则|z|=1.

分析 直接利用复数模的计算公式结合同角三角函数的基本关系式得答案.

解答 解:∵复数z=sin$\frac{π}{3}$-icos$\frac{π}{6}$,
∴|z|=$\sqrt{si{n}^{2}\frac{π}{3}+co{s}^{2}\frac{π}{3}}=1$.
故答案为:1.

点评 本题考查复数模的求法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=lnx-x2+ax.
(1)若函数f(x)在(0,e]上单调递增,试求a的取值范围;
(2)设函数f(x)在点C(1,f(1))处的切线为l,证明:函数f(x)图象上的点都不在直线l的上方.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合E={正方体},F={四棱柱},G={长方体},则有(  )
A.E⊆F⊆GB.F⊆G⊆EC.G⊆E⊆FD.E⊆G⊆F

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,AB⊥AC,AD⊥BC于D,则$\frac{1}{A{D}^{2}}$=$\frac{1}{A{B}^{2}}$+$\frac{1}{A{C}^{2}}$,类比上述结论,在四面体ABCD中,若AB,AC,AD两两垂直,AE⊥平面BCD,则$\frac{1}{A{E}^{2}}$=$\frac{1}{A{D}^{2}}$+$\frac{1}{A{B}^{2}}$+$\frac{1}{A{C}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设全集为R,集合M={x∈R|x2-4x+3>0},集合N={x∈R|log2x<1},则M∪N={x∈R|x>3或x<2};M∩N={x|0<x<1};∁R(M∩N)={x|x≤0或x≥1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等比数列{an}中,S3+3S2=0,则公比q的值为(  )
A.-2B.2C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知:向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$,下列命题中真命题的是(  )
①若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$或$\overrightarrow{a}$=-$\overrightarrow{b}$
②若$\overrightarrow{AB}$=$\overrightarrow{DC}$,则A、B、C、D是一个平行四边形的四个顶点;
③若$\overrightarrow{a}$=$\overrightarrow{b}$,$\overrightarrow{b}$=$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{c}$     
 ④若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$.
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,已知b=3,c=3$\sqrt{3}$,∠B=30°,则∠A=(  )
A.60°B.90°C.30°D.30°或90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求和:(1)Sn=(2-3×$\frac{1}{5}$)+[4-3×($\frac{1}{5}$)2]+[6-3×($\frac{1}{5}$)3]+…+[2n-3×($\frac{1}{5}$)n];
(2)Sn=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+$\frac{1}{4×5}$+…+$\frac{1}{n×(n+1)}$.

查看答案和解析>>

同步练习册答案