精英家教网 > 高中数学 > 题目详情
3.已知集合E={正方体},F={四棱柱},G={长方体},则有(  )
A.E⊆F⊆GB.F⊆G⊆EC.G⊆E⊆FD.E⊆G⊆F

分析 分别根据空间几何体的定义和集合之间的关系进行判断即可.

解答 解;正方体,长方体都是四棱柱,
长方体的底面为长方形,正四棱柱的底面是正方形,正方体的侧棱和底面正方形的边长相等,
∴它们之间的包含关系是{正方体}?{长方体}?{四棱柱},
即E⊆G⊆F,
故选D.

点评 本题主要考查空间四棱柱的关系,要求熟练掌握几种棱柱的定义,注意它们的区别和联系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.$\frac{-3+i}{i-1}$的虚部等于(  )
A.iB.1C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.解不等式:
(1)x(x+2)>x(3-x)+1;
(2)$\frac{1-x}{2+x}$≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在直三棱柱ABC-A1B1C1中,D是BC的中点.
(Ⅰ)求证:A1B∥平面ADC1
(Ⅱ)若AB⊥AC,AB=AC=1,AA1=2,求平面ADC1与平面ABC所成的锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知指数函数y=g(x)的图象过点(2,4),定义域为R,f(x)=$\frac{-g(x)+n}{2g(x)+m}$是奇函数.
(1)试确定函数y=g(x)的解析式;
(2)求实数m,n的值;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知正方体ABCD-A1B1C1D1,点E,F分别是棱BC,CC1的中点,Q是侧面BCC1B1内一点,若A1Q∥平面AEF,则点Q的轨迹为(  )
A.一个点B.两个点C.一条线段D.两条线段

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数y=f(x)的图象如图所示,设函数y=f(x)从-1到1的平均变化率为v1,从1到2的平均变化率为v2,则v1与v2的大小关系为(  )
A.v1>v2B.v1=v2C.v1<v2D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.复数z=sin$\frac{π}{3}$-icos$\frac{π}{6}$,则|z|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题:“指数函数y=ax(a>0)是增函数,而y=($\frac{1}{2}$)x是指数函数,所以y=($\frac{1}{2}$)x是增函数”结论是错误的,其原因是(  )
A.大前提错误B.小前提错误C.推理形式错误D.以上都不是

查看答案和解析>>

同步练习册答案