精英家教网 > 高中数学 > 题目详情
已知△ABC的内角A,B,C分别对应a,b,c,向量
m
=(-bc,
3
cos
A
2
)
n
=(
1+cos2A
b2+c2-a2
,2sin
A
2
)
,且
m
n
=1.
(1)求角度A;
(2)若
1+sin2B
cos2B
=-3
,求tanC.
分析:(1)根据
m
n
=1,根据
m
n
建立等式化简整理求得sin(A-
π
6
)=
1
2
进而求得A-
π
6
,则A可求.
(2)利用二倍角公式对题设等式化简求得sinB=2cosB,进而求得tanB,进而根据tanC=-tan(A+B)利用正切的两角和公式求得答案.
解答:解:(1)因为
m
• 
n
 =1
,所以-
1+cos2A
2
2bc
b2+c2-a2
+
3
•2sin
A
2
cos
A
2
=1

3
sinA-cosA=1
,即sin(A-
π
6
)=
1
2

因为0<A<,则-
π
6
<A-
π
6
6
,所以A=
π
3

(2)由题知
1+sin2B
cos2B
=-3
,得
(sinB+cosB)2
cos2B-sin2B
=-3
,即
sinB+cosB
cosB-sinB
=-3

得sinB=2cosB,即tanB=2
所以,tanC=tan[π-(A+B)]=-tan(A+B)=-
tanA+tanB
1-tanA•tanB
=-
2+
3
1-2
3
=
8+5
3
11
点评:本题主要考查了三角函数中的恒等变换的应用,二倍角,两角和的化简求值.解题的关键是对三角函数基本公式的熟练记忆.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的内角A、B、C的对边分别为a,b,c,acosB+bcosA=csin(A-B),且a2+b2-
3
ab=c2
,求角A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的内角A、B、C所对边的长分别为a、b、c,若ac=5,且
BA
BC
=
5

(1)求△ABC的面积大小及tanB的值;
(2)若函数f(x)=
2cos2
x
2
+2sin
x
2
cos
x
2
-1
cos(
π
4
+x)
,求f(B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的内角A,B,C的对边分别为a,b,c,下列说法中:①在△ABC中,a=x,b=2,B=45°,若该三角形有两解,则x取值范围是2<x<2
2
;②在△ABC中,若b=8,c=5,A=60°,则△ABC的外接圆半径等于
14
3
3
;③在△ABC中,若c=5,
cosA
cosB
=
b
a
=
4
3
,则△ABC的内切圆的半径为2;④在△ABC中,若AB=4,AC=7,BC=9,则BC边的中线AD=
7
2
;⑤设三角形ABC的BC边上的高AD=BC,a、b、c分别表示角A、B、C对应的三边,则
b
c
+
c
b
的取值范围是[2,
5
]
.其中正确说法的序号是
①④⑤
①④⑤
(注:把你认为是正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的内角A,B,C成等差数列,则cos2A+cos2C的取值范围是
[
1
2
3
2
]
[
1
2
3
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江门一模)已知△ABC的内角A、B、C所对的边a、b、c满足(a+b)2-c2=6且C=60°,则△ABC的面积S=
3
2
3
2

查看答案和解析>>

同步练习册答案