2£®ÒÑÖªÖÐÐÄÔÚÔ­µãO£¬½¹µãÔÚxÖáÉϵÄÍÖÔ²£¬ÀëÐÄÂÊ$e=\frac{{\sqrt{3}}}{2}$£¬ÇÒÍÖÔ²¹ýµã$£¨\sqrt{2}£¬\frac{{\sqrt{2}}}{2}£©$£®
£¨¢ñ£© Çó¸ÃÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©¹ýµãD£¨1£¬$\frac{1}{2}$£©µÄÖ±Ïߣ¨Ð±ÂÊ´æÔÚ£©Óë¸ÃÍÖÔ²M½»ÓÚP¡¢QÁ½µã£¬ÇÒ|DP|=|DQ|£¬Çó´ËÖ±Ïߵķ½³Ì£»
£¨¢ó£©¹ýµãE£¨1£¬0£©µÄÖ±Ïߣ¨Ð±ÂÊ´æÔÚ£©Óë¸ÃÍÖÔ²M½»ÓÚP¡¢QÁ½µã£¬ÇÒ|EP|=2|EQ|£¬Çó´ËÖ±Ïߵķ½³Ì£»
£¨¢ô£©Éè²»¹ýÔ­µãOµÄÖ±ÏßlÓë¸ÃÍÖÔ²½»ÓÚP¡¢QÁ½µã£¬Âú×ãÖ±ÏßOP¡¢PQ¡¢OQµÄбÂÊÒÀ´Î³ÉµÈ±ÈÊýÁУ¬Çó¡÷OPQÃæ»ýµÄȡֵ·¶Î§£®

·ÖÎö £¨¢ñ£©Éè³öÍÖÔ²µÄ·½³Ì£¬½«ÒÑÖªµã´úÈëÍÖÔ²µÄ·½³Ì¼°ÀûÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½µÃµ½¹ØÓÚÍÖÔ²µÄÈý¸ö²ÎÊýµÄµÈʽ£¬½â·½³Ì×éÇó³öa£¬b£¬cµÄÖµ£¬´úÈëÍÖÔ²·½³Ì¼´¿É£»
£¨¢ò£©ÉèÖ±Ïß·½³ÌΪy-$\frac{1}{2}$=k£¨x-1£©£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬½â·½³Ì¿ÉµÃkµÄÖµ£¬¼´¿ÉµÃµ½ËùÇóÖ±Ïߵķ½³Ì£»
£¨¢ó£©Éè¹ýµãE£¨1£¬0£©µÄÖ±Ïß·½³ÌΪy=k£¨x-1£©£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨Àí£¬ÔÙÓÉ|EP|=2|EQ|£¬¿ÉµÃ$\overrightarrow{EP}$=-2$\overrightarrow{EQ}$£¬ÔËÓÃÏòÁ¿µÄ×ø±ê±íʾ£¬½â·½³Ì¼´¿ÉµÃµ½kµÄÖµ£¬½ø¶øµÃµ½ËùÇóÖ±Ïߵķ½³Ì£»
£¨¢ô£©Éè³öÖ±Ïߵķ½³Ì£¬½«Ö±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢£¬ÏûÈ¥xµÃµ½¹ØÓÚyµÄ¶þ´Î·½³Ì£¬ÀûÓÃΤ´ï¶¨ÀíµÃµ½¹ØÓÚÁ½¸ö½»µãµÄ×ø±êµÄ¹ØÏµ£¬½«Ö±ÏßOP£¬PQ£¬OQµÄбÂÊÓÃ×ø±ê±íʾ£¬¾ÝÒÑÖªÈý¸öбÂʳɵȱÈÊýÁУ¬Áгö·½³Ì£¬½«Î¤´ï¶¨ÀíµÃµ½µÄµÈʽ´úÈ룬Çó³ökµÄÖµ£¬ÀûÓÃÅбðʽ´óÓÚ0µÃµ½mµÄ·¶Î§£¬½«¡÷OPQÃæ»ýÓÃm±íʾ£¬Çó³öÃæ»ýµÄ·¶Î§£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉÉèÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬
¼´ÓÐe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬a2-b2=c2£¬$\frac{2}{{a}^{2}}$+$\frac{1}{2{b}^{2}}$=1£¬
½âµÃa=2£¬b=1£¬
ÔòÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£»
£¨¢ò£©D£¨1£¬$\frac{1}{2}$£©´úÈëÍÖÔ²·½³Ì£¬¿ÉµÃ$\frac{1}{4}$+$\frac{1}{4}$£¼1£¬DÔÚÍÖÔ²ÄÚ£¬
ÉèÖ±Ïß·½³ÌΪy-$\frac{1}{2}$=k£¨x-1£©£¬¼´Îªy=kx+$\frac{1}{2}$-k£¬
´úÈëÍÖÔ²·½³Ì£¬¿ÉµÃ£¨1+4k2£©x2+8k£¨$\frac{1}{2}$-k£©x+4£¨$\frac{1}{2}$-k£©2-4=0£¬
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬Ôòx1+x2=$\frac{8{k}^{2}-4k}{1+4{k}^{2}}$£¬
ÓÉ|DP|=|DQ|£¬¿ÉµÃDΪPQµÄÖе㣬
Ôò$\frac{4{k}^{2}-2k}{1+4{k}^{2}}$=1£¬½âµÃk=-$\frac{1}{2}$£¬
¼´ÓÐÖ±Ïߵķ½³ÌΪy=-$\frac{1}{2}$x+1£»
£¨¢ó£©Éè¹ýµãE£¨1£¬0£©µÄÖ±Ïß·½³ÌΪy=k£¨x-1£©£¬´úÈëÍÖÔ²·½³Ì£¬¿ÉµÃ
£¨1+4k2£©x2-8k2x+4k2-4=0£¬
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬Ôòx1+x2=$\frac{8{k}^{2}}{1+4{k}^{2}}$£¬x1x2=$\frac{4{k}^{2}-4}{1+4{k}^{2}}$£¬¢Ù
ÓÉ|EP|=2|EQ|£¬¿ÉµÃ$\overrightarrow{EP}$=-2$\overrightarrow{EQ}$£¬
¼´x1-1=-2£¨x2-1£©£¬¼´ÓÐx1=-2x2+3£¬¢Ú
Óɢ٢ڿɵÃx2=$\frac{3+4{k}^{2}}{1+4{k}^{2}}$£¬x1=$\frac{4{k}^{2}-3}{1+4{k}^{2}}$£¬
¼´ÓÐ$\frac{16{k}^{4}-9}{£¨1+4{k}^{2}£©^{2}}$=$\frac{4{k}^{2}-4}{1+4{k}^{2}}$£¬½âµÃk=¡À$\frac{\sqrt{15}}{6}$£¬
¼´ÓÐÖ±Ïߵķ½³ÌΪy=¡À$\frac{\sqrt{15}}{6}$£¨x-1£©£»
£¨¢ô£©ÓÉÌâÒâ¿ÉÖª£¬Ö±ÏßlµÄбÂÊ´æÔÚÇÒ²»Îª0£¬
¹Ê¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£¨m¡Ù0£©£¬P£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$£¬ÏûÈ¥yµÃ
£¨1+4k2£©x2+8kmx+4£¨m2-1£©=0£¬
Ôò¡÷=64k2b2-16£¨1+4k2b2£©£¨b2-1£©=16£¨4k2-m2+1£©£¾0£¬
ÇÒx1+x2=-$\frac{8km}{1+4{k}^{2}}$£¬x1•x2=$\frac{4£¨{m}^{2}-1£©}{1+4{k}^{2}}$£®
¹Êy1y2=£¨kx1+m£©£¨kx2+m£©=k2x1x2+km£¨x1+x2£©+m2£®
ÒòΪֱÏßOP£¬PQ£¬OQµÄбÂÊÒÀ´Î³ÉµÈ±ÈÊýÁУ¬
ËùÒÔ$\frac{{y}_{1}}{{x}_{1}}$•$\frac{{y}_{2}}{{x}_{2}}$=$\frac{{k}^{2}{x}_{1}{x}_{2}+km£¨{x}_{1}+{x}_{2}£©+{m}^{2}}{{x}_{1}{x}_{2}}$=k2£¬
¼´-$\frac{8{k}^{2}{m}^{2}}{1+4{k}^{2}}$+m2=0£¬ÓÖm¡Ù0£¬
ËùÒÔk2=$\frac{1}{4}$£¬¼´k=¡À$\frac{1}{2}$£®
ÓÉÓÚÖ±ÏßOP£¬OQµÄбÂÊ´æÔÚ£¬ÇÒ¡÷£¾0£¬µÃ
0£¼m2£¼2ÇÒm2¡Ù1£®
µãOµ½Ö±ÏßlµÄ¾àÀëd=$\frac{|m|}{\sqrt{1+{k}^{2}}}$£¬
ÔòS¡÷OPQ=$\frac{1}{2}$d|PQ|=$\frac{1}{2}$|x1-x2|•|m|=$\frac{1}{2}$|m|•$\sqrt{\frac{64{k}^{2}{m}^{2}}{£¨1+4{k}^{2}£©^{2}}-\frac{16£¨{m}^{2}-1£©}{1+4{k}^{2}}}$
=$\sqrt{{m}^{2}£¨2-{m}^{2}£©}$£¼$\frac{{m}^{2}+2-{m}^{2}}{2}$=1£¬
ËùÒÔS¡÷OPQµÄȡֵ·¶Î§Îª£¨0£¬1£©£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÍÖÔ²µÄÀëÐÄÂʺ͵ãÂú×ãÍÖÔ²·½³Ì£¬¿¼²éÖ±ÏßÓëÔ²×¶ÇúÏßµÄλÖùØÏµÎÊÌ⣬һ°ãÉè³öÖ±Ïß·½³Ì£¬½«Ö±Ïß·½³ÌÓëÔ²×¶ÇúÏß·½³ÌÁªÁ¢£¬ÏûÈ¥Ò»¸öδ֪Êý£¬µÃµ½¹ØÓÚÒ»¸öδ֪ÊýµÄ¶þ´Î·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí£¬×¢ÒâÔËÓÃÏòÁ¿¹²Ïߺ͵㵽ֱÏߵľàÀ빫ʽºÍ»ù±¾²»µÈʽ£®×¢ÒâÉèÖ±Ïß·½³Ìʱ£¬Ò»¶¨ÒªÌÖÂÛÖ±ÏßµÄбÂÊÊÇ·ñ´æÔÚ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®£¨1-$\sqrt{x}$£©5£¨1+$\sqrt{x}$£©7µÄÕ¹¿ªÊ½ÖÐx4µÄϵÊýΪ-5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªÃüÌâp£ºÈô¦ÁΪµÚÒ»ÏóÏ޽ǣ¬¦ÂΪµÚ¶þÏóÏ޽ǣ¬Ôò¦Á£¼¦Â£»ÃüÌâq£ºÔڵȱÈÊýÁÐ{an}ÖУ¬Èôa2£¼a1£¬ÔòÊýÁÐ{an}ΪµÝ¼õÊýÁУ®ÏÂÁÐÃüÌâÎªÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£®p¡ÄqB£®£¨©Vp£©¡Ä£¨©Vq£©C£®£¨©Vp£©¡ÄqD£®p¡Åq

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®cos£¨-420¡ã£©cos300¡ã=-$\frac{1}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®$\frac{2si{n}^{2}35¡ã-1}{cos10¡ã-\sqrt{3}sin10¡ã}$µÄֵΪ£¨¡¡¡¡£©
A£®1B£®-1C£®$\frac{1}{2}$D£®-$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÅ×ÎïÏßE£ºy2=2px£¨p£¾0£©µÄ×¼ÏßÓëxÖá½»ÓÚµãK£¬¹ýKµã×÷ÇúÏßC£ºx2-4x+3+y2=0µÄÇÐÏߣ¬ÇеãMµ½xÖáµÄ¾àÀëΪ$\frac{2\sqrt{2}}{3}$
£¨¢ñ£©ÇóÅ×ÎïÏßEµÄ·½³Ì
£¨¢ò£©ÉèA£¬BÊÇÅ×ÎïÏßEÉÏ·Ö±ðλÓÚxÖáÁ½²àµÄÁ½¸ö¶¯µã£¬ÇÒ$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{9}{4}$£¨ÆäÖÐOÎª×ø±êÔ­µã£©
£¨i£©ÇóÖ¤£ºÖ±ÏßABÉϱعý¶¨µã£¬²¢Çó³ö¸Ã¶¨µãQµÄ×ø±ê
£¨ii£©¹ýµãQ×÷ABµÄ´¹ÏßÓëÅ×ÎïÏß½»ÓÚG£¬DÁ½µã£¬ÇóËıßÐÎAGBDÃæ»ýµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=ax-bx+$\frac{3}{2}$x2-5£¨a£¾0£¬ÇÒa¡Ù1£©£¬f¡ä£¨x£©Îªf£¨x£©µÄµ¼º¯Êý£¬f¡ä£¨0£©=0£®
£¨¢ñ£©Çóa£¬bÂú×ãµÄ¹ØÏµÊ½£¨ÓÃa±íʾb£©£»
£¨¢ò£©µ±a=e£¨eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©Ê±£¬Èô²»µÈʽf£¨x£©£¼0ÔÚ¿ªÇø¼ä£¨n1£¬n2£©ÉϺã³ÉÁ¢£¨n1£¬n2¡ÊZ£©£¬Çón2-n1µÄ×î´óÖµ£»
£¨¢ó£©µ±a£¾1ʱ£¬Èô´æÔÚx1£¬x2¡Ê[-1£¬1]£¬Ê¹|f£¨x1£©-f£¨x2£©|¡Ýe-$\frac{1}{2}$³ÉÁ¢£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Ò»¸ö¼¸ºÎÌåµÄÈýÊÓͼ¼°Æä³ß´çÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®48B£®80C£®112D£®144

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸