精英家教网 > 高中数学 > 题目详情
10.作出下列各个函数的示意图:
(1)y=2-2x
(2)y=log${\;}_{\frac{1}{3}}$[3(x+2)];
(3)y=|log${\;}_{\frac{1}{2}}$(-x)|.

分析 先化简函数的解析式,再利用变换法作出函数的图象.

解答 解:(1)∵y=2-2x=-2x+2,先作出函数y=2x的图象,再把函数y=2x的图象关于x轴对称,可得函数y=-2x的图象;
再把函数y=-2x的图象向上平移2个单位,可得y=-2x+2 的图象,如图(1)所示.
(2)先作出y=log${\;}_{\frac{1}{3}}$ x的图象,再把它的图象向左平移2个单位,可得log${\;}_{\frac{1}{3}}$(x+2)的图象;
再把所得图象的横坐标变为原来的$\frac{1}{3}$倍,可得y=log${\;}_{\frac{1}{3}}$[3(x+2)]的图象,如图(2)所示.
(3)先作出y=${log}_{\frac{1}{2}}$ x的图象,再把它的图象关于y轴对称,可得y=${log}_{\frac{1}{2}}$(-x)的图象;
再把y=${log}_{\frac{1}{2}}$(-x)的图象位于x轴上方的部分不留不变,
把它位于x轴下方的部分对称到x轴的上方,可得y=|log${\;}_{\frac{1}{2}}$(-x)|的图象,如图(3)所示.

点评 本题主要考查函数的图象特征,用变换法作函数的图象,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{ln(x-1)}{x-2}$(x>2).
(Ⅰ) 判断函数f(x)的单调性;
(Ⅱ)若存在实数a,使得f(x)<a对?x∈(2,+∞)均成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知点A(-2,-2),B(-2,6),C(4,-2),点P在圆x2+y2=4上运动,则|PA|2+|PB|2+|PC|2的最大值为88.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某单位用3240万元购得一块空地,计划在该地块上建造一栋至少15层的小高层、每层3000平方米的楼房.经测算,如果将楼房建为x(x≥15)层,则每平方米的平均建筑费用为840+kx(单位:元).已知盖15层每平方米的平均建筑费用为1245元.
(1)求k的值;
(2)当楼房建为多少层时,楼房每平方米的平均综合费用最少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=$\frac{购地总费用}{建筑总面积}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列函数的导数:
(1)y=3x3-$\frac{1}{4}$;
(2)y=$\frac{{x}^{3}}{\sqrt{x}}$-e3
(3)y=ax2+bx+c;
(4)y=$\frac{1+x}{2-{x}^{2}}$;
(5)y=(1+cosx)(x-lnx);
(6)y=x10+ln(1+x2);
(7)y=2sin(4-3x);
(8)y=x2$\sqrt{1-x}$;
(9)y=$\frac{co{s}^{2}x}{1+sinx}$;
(10)y=(x2-5)3+2(x2-5)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算下列矩阵的行列式,如可逆,求其逆$(\begin{array}{l}{1}&{2}&{3}&{4}\\{4}&{3}&{2}&{1}\\{10}&{9}&{8}&{7}\\{7}&{8}&{9}&{10}\end{array})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是矩形,E是CD的中点,D1E⊥BC.
(1)求证:四边形BCC1B1是矩形;
(2)若AA1=$\sqrt{2}$,BC=DE=D1E=1,求平面BCC1B1与平面BED1所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.行列式$|\begin{array}{l}{2}&{8}&{3}\\{1}&{5}&{7}\\{-1}&{4}&{-6}\end{array}|$中元素8的代数余子式的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,C1:$\left\{\begin{array}{l}{x=t}\\{y=k(t-1)}\end{array}\right.$(t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C2:ρ2+10ρcosθ-6ρsinθ+33=0.
(1)求C1的普通方程及C2的直角坐标方程,并说明它们分别表示什么曲线;
(2)若P,Q分别为C1,C2上的动点,且|PQ|的最小值为2,求k的值.

查看答案和解析>>

同步练习册答案