精英家教网 > 高中数学 > 题目详情
1.定义为R上的函数f(x)满足(x+2)f'(x)<0,又$a=f({log_2}\frac{1}{3})$,$b=f({(\frac{1}{3})^{0.3}})$,c=f(ln3),则(  )
A.a<b<cB.b<c<aC.c<a<bD.c<b<a

分析 先确定函数的自变量的范围和大小关系,再根据导数的符号确定函数的单调性,进一步进行判定函数值的大小即可.

解答 解:∵-2<${log}_{\frac{1}{3}}$3=-1<0<($\frac{1}{3}$)0.3<1<ln3,
而(x+2)f′(x)<0,若x+2>0时,则f′(x)<0,
所以函数f(x)在(-2,+∞)上是单调减函数,
∴f(ln3)<f(($\frac{1}{3}$)0.3)<f(${log}_{\frac{1}{3}}$3),
∴c<b<a,
故选:D.

点评 本题主要考查了函数的单调性与导数的关系、对数值大小的比较等基础知识,考查运算求解能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.解关于x的不等式:a(a-1)x2-(2a-1)x+1>0,其中α∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数$f(x)=\frac{x^e}{e^x}$,g(x)=xlnx-x+1,正实数m,n满足|mf(x1)-ng(x2)|≤1对任意的x1,x2∈[1,e]恒成立,则m+n的最大值是(  )
A.$\frac{1}{e}+1$B.e+1C.2e+1D.$\frac{1}{e}+2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.边长为5,7,8的三角形的最大角与最小角的和是(  )
A.75°B.90°C.135°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点A(2,-3),B(-3,-2)直线L过点P(1,1)且与线段AB相交,直线L的倾斜角α的取值范围是[arctan$\frac{3}{4}$,π-arctan4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=\frac{2}{x}-kx+5lnx-2n(n∈{N^*},k∈R)$的一个极值点2,
(1)求函数f(x)在点(1,f(1))处的切线l的方程;
(2)若数列{an}满足a3=15,且对任意的n∈N*且n≥2,点(an,an-1)均在切线l上,证明:$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}<\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若函数f(x)在区间(-1,2)上是减函数,求使f(1+x)<f(2x-1)成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数$f(x)=\left\{\begin{array}{l}{\frac{2}{3}x-1,x≥0}\\{\frac{1}{x},x<0}\end{array}$,若f(a)<a,则实数a的范围为(  )
A.(-∞,-1)B.(-1,+∞)C.(3,+∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=2sinxsin(x+\frac{π}{6})$.
(1)求函数f(x)的单调递增区间;
(2)当$x∈[{0,\frac{π}{2}}]$时,求函数f(x)的最大值和最小值.

查看答案和解析>>

同步练习册答案