精英家教网 > 高中数学 > 题目详情
12.已知函数$f(x)=\frac{x^e}{e^x}$,g(x)=xlnx-x+1,正实数m,n满足|mf(x1)-ng(x2)|≤1对任意的x1,x2∈[1,e]恒成立,则m+n的最大值是(  )
A.$\frac{1}{e}+1$B.e+1C.2e+1D.$\frac{1}{e}+2$

分析 求出函数的导数,问题转化为ng(x2)-1≤mf(x1)≤ng(x2)+1,求出m+n的最大值即可.

解答 解:$f′(x)=\frac{{{x^{e-1}}(e-x)}}{e^x}$,g′(x)=lnx,
当x∈[1,e]时,f′(x)≥0,g′(x)≥0,
∴f(x),g(x)在[1,e]上单调递增,
∴$f(x)∈[\frac{1}{e},1]$,g(x)∈[0,1],
|mf(x1)-ng(x2)|≤1
?ng(x2)-1≤mf(x1)≤ng(x2)+1,
依题意得$\left\{{\begin{array}{l}{mf{{(x)}_{max}}≤ng{{(x)}_{min}}+1}\\{mf{{(x)}_{min}}≥ng{{(x)}_{max}}-1}\end{array}}\right.$,
即$\left\{{\begin{array}{l}{m≤1}\\{\frac{m}{e}≥n-1}\end{array}}\right.$,∴$\left\{{\begin{array}{l}{m≤1}\\{en-m≤e}\end{array}}\right.$,
∴$m+n=\frac{1}{e}(en-m)+(1+\frac{1}{e})m≤2+\frac{1}{e}$,
故选:D.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2$\sqrt{3}sin({π-x})cosx+2co{s^2}$x+a-1.
(1)求f(x)的对称轴;
(2)若f(x)在区间$[{-\frac{π}{6},\frac{π}{3}}]$上的最大值与最小值的和为2,求a的值.
(3)若f(x)=0有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2+ax+1,g(x)=ex(其中e为自然对数的底数).
(Ⅰ)若a=1,求函数y=f(x)•g(x)在区间[-2,0]上的最大值;
(Ⅱ)若a=1,关于x的方程f(x)=k•g(x)有且仅有一个根,求实数k的取值范围;
(Ⅲ)若对任意的x1,x2∈[$\frac{1}{2}$,2]且x1≠x2,不等式|f(x1)-f(x2)|<|g(x1)-g(x2)|均成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知C${\;}_{n}^{2}$=10,则n的值等于(  )
A.10B.5C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.有下列关系:①人的年龄与他(她)拥有的财富之间的关系; ②曲线上的点与该点的坐标之间的关系; ③苹果的产量与气候之间的关系;④森林中的同一种树木,其横断面直径与高度之间的关系,其中是相关关系的为①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.数列{an}的通项 an=n2(cos2$\frac{nπ}{3}$-sin2$\frac{nπ}{3}$),其前n项和为Sn
(1)求S1,S2,S3
(2)求Sn
(3)若数列bn=-$\frac{9n-4}{n+2}$•$\frac{1}{{S}_{3n-1}}$,其前n项和为Tn,求证:$\frac{2}{3}$≤Tn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知x>1,y>1,且$\frac{1}{4}$lnx,$\frac{1}{4}$,lny成等比数列,则xy(  )
A.有最大值eB.有最大值 $\sqrt{e}$C.有最小值eD.有最小值 $\sqrt{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义为R上的函数f(x)满足(x+2)f'(x)<0,又$a=f({log_2}\frac{1}{3})$,$b=f({(\frac{1}{3})^{0.3}})$,c=f(ln3),则(  )
A.a<b<cB.b<c<aC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若[x]表示不超过x的最大整数,则图中的程序框图运行之后输出的结果为(  )
A.49850B.49900C.49800D.49950

查看答案和解析>>

同步练习册答案