精英家教网 > 高中数学 > 题目详情
17.数列{an}的通项 an=n2(cos2$\frac{nπ}{3}$-sin2$\frac{nπ}{3}$),其前n项和为Sn
(1)求S1,S2,S3
(2)求Sn
(3)若数列bn=-$\frac{9n-4}{n+2}$•$\frac{1}{{S}_{3n-1}}$,其前n项和为Tn,求证:$\frac{2}{3}$≤Tn<$\frac{3}{2}$.

分析 (1)an=n2(cos2$\frac{nπ}{3}$-sin2$\frac{nπ}{3}$)=${n}^{2}cos\frac{2nπ}{3}$,可得S1=a1.a2,a3.即可得出.
(2)由an=${n}^{2}cos\frac{2nπ}{3}$,可得S3k=(a1+a2+a3)+(a4+a5+a6)+…+(a3k-2+a3k-1+a3k),进而得出:S3k-1=S3k-a3k,S3k-2=S3k-1-a3k-1
(3)bn=-$\frac{9n-4}{n+2}$•$\frac{1}{{S}_{3n-1}}$=-$\frac{9n-4}{n+2}$•$\frac{2}{n(4-9n)}$=$\frac{2}{n(n+2)}$=$\frac{1}{n}-\frac{1}{n+2}$,利用裂项求和方法与数列的单调性即可得出.

解答 (1)解:an=n2(cos2$\frac{nπ}{3}$-sin2$\frac{nπ}{3}$)=${n}^{2}cos\frac{2nπ}{3}$,可得S1=a1=$cos\frac{2π}{3}$=-$\frac{1}{2}$.
a2=${2}^{2}×cos\frac{4π}{3}$=-2.${a}_{3}={3}^{2}cos2π$=9.
∴S1=-$\frac{1}{2}$,S2=-$\frac{5}{2}$,S3=$\frac{13}{2}$.
(2)解:由an=${n}^{2}cos\frac{2nπ}{3}$,可得S3k=(a1+a2+a3)+(a4+a5+a6)+…+(a3k-2+a3k-1+a3k
=$(-\frac{{1}^{2}+{2}^{2}}{2}+{3}^{2})$+$(-\frac{{4}^{2}+{5}^{2}}{2}+{6}^{2})$+…+$[-\frac{(3k-2)^{2}+(3k-1)^{2}}{2}+(3k)^{2}]$
=$\frac{13}{2}+\frac{31}{2}$+…+$\frac{18k-5}{2}$=$\frac{k(9k+4)}{2}$.
S3k-1=S3k-a3k=$\frac{k(9k+4)}{2}$-(3k)2=$\frac{k(4-9k)}{2}$.
S3k-2=S3k-1-a3k-1=$\frac{k(4-9k)}{2}-[-\frac{(3k-1)^{2}}{2}]$=$\frac{1}{2}$-k=$-\frac{3k-2}{3}-\frac{1}{6}$.
故Sn=$\left\{\begin{array}{l}{-\frac{n}{3}-\frac{1}{6},n=3k-2}\\{\frac{(n+1)(1-3n)}{6},n=3k-1}\\{\frac{n(3n+4)}{6},n=3k}\end{array}\right.$,k∈N*
(3)证明:bn=-$\frac{9n-4}{n+2}$•$\frac{1}{{S}_{3n-1}}$=-$\frac{9n-4}{n+2}$•$\frac{2}{n(4-9n)}$=$\frac{2}{n(n+2)}$=$\frac{1}{n}-\frac{1}{n+2}$,
其前n项和为Tn=$(1-\frac{1}{3})+(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})$+$(\frac{1}{n}-\frac{1}{n+2})$
=$\frac{3}{2}$-$\frac{1}{n+1}-\frac{1}{n+2}$$<\frac{3}{2}$,
另一方面:Tn≥T1=$\frac{3}{2}-\frac{1}{2}-\frac{1}{3}$=$\frac{2}{3}$.
∴$\frac{2}{3}$≤Tn<$\frac{3}{2}$.

点评 本题考查了三角函数求值、等差数列的通项公式与求和公式、分类讨论方法、裂项求和方法与数列的单调性,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.等差数列{an}中,a1+a7=36,a3+a9=20.则数列{an}的前9项和为(  )
A.66B.86C.106D.126

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.为灾区儿童献爱心活动中,某校26个班级捐款数统计如下表,则捐款数众数是(  )
捐款数/元350360370380390400410
班级个数/个3169421
A.370元B.380元C.390元D.410元

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(-$\sqrt{3}$,x),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,则x=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数$f(x)=\frac{x^e}{e^x}$,g(x)=xlnx-x+1,正实数m,n满足|mf(x1)-ng(x2)|≤1对任意的x1,x2∈[1,e]恒成立,则m+n的最大值是(  )
A.$\frac{1}{e}+1$B.e+1C.2e+1D.$\frac{1}{e}+2$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,角A,B,C所对的边分别为a、b、c.若$sinB+cosB=\sqrt{2}$,a=$\sqrt{2}$,b=2,则角A的大小为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.边长为5,7,8的三角形的最大角与最小角的和是(  )
A.75°B.90°C.135°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=\frac{2}{x}-kx+5lnx-2n(n∈{N^*},k∈R)$的一个极值点2,
(1)求函数f(x)在点(1,f(1))处的切线l的方程;
(2)若数列{an}满足a3=15,且对任意的n∈N*且n≥2,点(an,an-1)均在切线l上,证明:$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}<\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ2cso2θ+ρ2-8ρsinθ=0,曲线C2的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=2+\sqrt{3}t}\end{array}\right.$.
(1)将曲线C1的极坐标方程化为直角坐标方程;
(2)曲线C1与C2相交于A,B两点,若P(0,2),求|PA|•|PB|的值.

查看答案和解析>>

同步练习册答案