精英家教网 > 高中数学 > 题目详情
把函数y=tanx(x∈{x|x≠
π
2
+kπ,k∈Z}的图象上所有点向左平行移动
π
3
个单位长度,再把所得图象上所有点的横坐标缩短到原来的
1
2
倍(纵坐标不变),得到的图象所表示的函数解析式是(  )
A、y=tan(2x-
π
3
B、y=tan(
x
2
+
π
6
C、y=tan(2x+
π
3
D、y=tan(2x+
3
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.
解答: 解:把函数y=tanx(x∈{x|x≠
π
2
+kπ,k∈Z}的图象上所有点向左平行移动
π
3
个单位长度,可得函数y=tan(x+
π
3
)的图象;
再把所得图象上所有点的横坐标缩短到原来的
1
2
倍(纵坐标不变),得到的图象所表示的函数解析为y=tan(2x+
π
3
),
故选:C.
点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|x2-2x≥0},B={x|x<1},则A∩B=(  )
A、[-1,1)
B、(0.1)
C、[0,1)
D、(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B是圆O:x2+y2=1上的两个动点,P是AB线段上的动点,当△AOB的面积最大时,则
AP
2
-
AO
AP
的最小值是(  )
A、-
1
8
B、0
C、-
2
4
D、-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设单位向量e1,e2,e3两两垂直,
a
沿
e1
e2
e3
方向的正交分解为2
e1
+3
e2
-4
e3
,求证:
a
e1
=2,
a
e2
=3,
a
e3
=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下结论:
①函数y=sin(kπ-x),(k∈Z)为奇函数;
②函数y=tan(2x+
π
6
)
的图象关于点(
π
12
,0)
对称;
③函数y=cos(2x+
π
3
)
的图象的一条对称轴为x=-
2
3
π

④函数y=2sin(x-
π
3
),x∈[0,2π]
的单调递减区间是[
6
11π
6
]

⑤函数y=sin2x的周期是kπ(k∈Z).
其中正确结论的序号为
 
.(多选、少选、选错均不得分).

查看答案和解析>>

科目:高中数学 来源: 题型:

记曲线y=sin
π
2
x,x∈[-3,1]与y=1所围成的封闭区域为D,若直线y=ax+2与D有公共点,则实数a的取值范围是(  )
A、[-1,
1
3
]
B、(-∞,-1]∪[
1
3
,+∞)
C、[-
1
π
1
]
D、(-∞,-
1
π
]∪[
1
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的各项都是正数,其前n项和Sn满足2Sn=an+
1
an
,n∈N*,则数列{an}的通项公式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(-2,-3),B(2,1),C(1,4),D(-7,-4),试问
AB
CD
是否共线?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α是第二象限角,其终边上一点P的坐标是(-
2
,y)
,且sinα=
2
4
y.
(1)求tanα的值;
(2)求
3sinα•cosα
4sin2α+2cos2α
的值.

查看答案和解析>>

同步练习册答案