精英家教网 > 高中数学 > 题目详情
14.已知数列{an}满足:a1=2,an+1=an2-nan+1,令bn=$\frac{1}{a{\;}_{n}•a{\;}_{n+1}}$,则数列{bn}的前10项和为$\frac{5}{12}$.

分析 a1=2,an+1=an2-nan+1,变形为an+1-(n+2)=[an-(n+1)](an+1),由于an+1≠0,可得an=n+1.再利用“裂项求和”即可得出.

解答 解:∵a1=2,an+1=an2-nan+1,
∴an+1-(n+2)=[an-(n+1)](an+1),
由于an+1≠0,可得an=n+1.
∴bn=$\frac{1}{a{\;}_{n}•a{\;}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}-\frac{1}{n+2}$,
∴数列{bn}的前n项和Sn=$(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})$+…+$(\frac{1}{n+1}-\frac{1}{n+2})$
=$\frac{1}{2}-\frac{1}{n+2}$=$\frac{n}{2n+4}$.
∴S10=$\frac{10}{24}=\frac{5}{12}$.
故答案为:$\frac{5}{12}$.

点评 本题考查了“裂项求和”方法、递推式的应用,考查了变形能力、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知集合A={-1,0,1},B={1,2},则A∪B=(  )
A.{1}B.{0,1}C.{-1,0,2}D.{-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四棱锥P-ABCD的底面ABCD是正方形,棱PD⊥底面ABCD,PD=2,∠PCD=45°,E是PC的中点.
(1)证明:PA∥平面BDE;
(2)证明:平面BDE⊥平面PBC;
(3)求三棱锥C-BED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知四边形ABCD,EADM,MDCF都是边长为2的正方形,点P,Q分别是ED,AC的中点.
(1)求几何体EMF-ABCD的表面积;
(2)证明:PQ∥平面BEF;
(3)求平面BEF与平面ABCD夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}各项均为正数,a1=1,对于任意n∈N+,2$\sqrt{{S}_{n}}$=an+1,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=$\frac{\sqrt{4-{x}^{2}}-5}{3x+3}$的值域是{y|y$≥\frac{5+2\sqrt{22}}{9}$,或y$≤\frac{5-2\sqrt{22}}{9}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数$f(x)=3sin(2x+\frac{π}{4})+1$,将y=f(x)的图象向右平移φ(φ>0)个单位,使得到的图象关于y对称,则φ的最小值为(  )
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{3π}{8}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=(ax2+x-1)ex,其中e是自然对数的底数,a∈R.
(Ⅰ)若曲线f(x)在点(1,f(1))处的切线的斜率为4e,求切线方程;
(Ⅱ)试求f(x)的单调区间并求出当a>0时f(x)的极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合A={x||x|≤2,x∈R},B={x|x2-1≥0,x∈R},则A∩B={x|-2≤x≤-1或1≤x≤2}.

查看答案和解析>>

同步练习册答案