精英家教网 > 高中数学 > 题目详情
15.已知sinθ=$\frac{m-3}{m+5}$,cosθ=$\frac{4-2m}{m+5}$,则tan(kπ+θ)(k∈Z)的值为(  )
A.$\frac{4-2m}{m-3}$B.±$\frac{m-3}{4-2m}$C.-$\frac{5}{12}$D.-$\frac{3}{4}$或-$\frac{5}{12}$

分析 利用平方关系求出m的值,然后求出正切的函数值即可.

解答 解:已知sinθ=$\frac{m-3}{m+5}$,cosθ=$\frac{4-2m}{m+5}$,
所以( $\frac{m-3}{m+5}$)2+( $\frac{4-2m}{m+5}$)2=1所以m=8,满足题意,
所以tan(kπ+θ)=tanθ=$\frac{sinθ}{cosθ}$=$\frac{m-3}{4-2m}$=-$\frac{5}{12}$;
故选:C.

点评 本题是基础题,考查三角函数的平方关系,三角函数的定义,考查计算能力,注意角的范围是解题的一个关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在数列{an}中,a1=1,a2=2,$\frac{{a}_{n}}{{a}_{n-2}}$=(-1)n•2(n≥3).求{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知△ABC的内角A,B,C的对边长为a,b,c,面积为S,且 S=1,a=1.
(1)若B=$\frac{π}{6}$,求边长b;
(2)若A=$\frac{π}{6}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设a+b+c=3,且a<b<c,若a,b,c成等差数列,a2,b2,c2成等比数列,求a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.把下列根式表示为分数指数幂的形式,把分数指数幂表示为根式的形式:
①(a-b)${\;}^{-\frac{3}{4}}$(a>b);
②$\root{5}{(ab)^{2}}$;
③$\root{3}{(x-1)^{5}}$;
④$\frac{1}{\root{3}{{a}^{2}}}$;
⑤(a-b)${\;}^{\frac{3}{7}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知定义在R上的函数f(x),对任意x1,x2∈R.且x1≠x2.总有(x1-x2)[f(x1)-f(x2)]>0,且函数f(x) 的图象经过点A(5,-2).若f(2m-1)<-2.求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{2x+b}{x-a}$(x∈R,x≠a).
(1)若函数f(x)的图象关于直线y=x对称,求实数a的值;
(2)若函数F(x)=$\frac{a}{f(x)}$(a≠0),且F(x)的反函数F-1(x)的图象如图,求出a、b的值,并写出F-1(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知椭圆C:$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|=(  )
A.10B.15C.20D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=$\frac{2x}{1+x}$,求f(1)+f(2)+…+f(100)+f($\frac{1}{2}$)+f($\frac{2}{2}$)+…+f($\frac{100}{2}$)+…+f($\frac{1}{100}$)+f($\frac{2}{100}$)+…+f($\frac{100}{100}$)的值.

查看答案和解析>>

同步练习册答案