精英家教网 > 高中数学 > 题目详情
20.已知定义在R上的函数f(x),对任意x1,x2∈R.且x1≠x2.总有(x1-x2)[f(x1)-f(x2)]>0,且函数f(x) 的图象经过点A(5,-2).若f(2m-1)<-2.求m的取值范围.

分析 先求出函数的单调性,得到2m-1<5,解出即可.

解答 解:∵(x1-x2)[f(x1)-f(x2)]>0,
∴x1>x2时:f(x1)>f(x2),
x1<x2时:f(x1)<f(x2),
∴函数f(x)在R上递增,
∵f(5)=-2,
∴由f(2m-1)<-2=f(5),
得:2m-1<5,解得:m<3.

点评 本题考查了函数的单调性问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.二次函数f(x)的图象过点为A(-1,-16),且f(x)≤0的解集为{x|-5≤x≤3},g(x)=2x2+ax+1.
(1)求函数f(x)的解析式;
(2)解不等式g(x)≥0;
(3)若不等式xf(x)≥g(x)在区间x∈[1,2]上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设f(x)是定义在(0,+∞)上的单调增函数,且满足f(xy)=f(x)+f(y),f(3)=1.
(1)求f(1);
(2)若f(x)+2≤f(x+8),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.计算下列各式(式中字母都是正数):(0.0081)${\;}^{-\frac{1}{4}}$-[3×($\frac{7}{8}$)0]-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知sinθ=$\frac{m-3}{m+5}$,cosθ=$\frac{4-2m}{m+5}$,则tan(kπ+θ)(k∈Z)的值为(  )
A.$\frac{4-2m}{m-3}$B.±$\frac{m-3}{4-2m}$C.-$\frac{5}{12}$D.-$\frac{3}{4}$或-$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设a、b>0,a+b=5,则$\sqrt{a+1}$+$\sqrt{b+3}$的取值范围为(1+2$\sqrt{2}$,3$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,已知cosA=$\frac{3}{5}$,tanB=2,则cosC的值为(  )
A.$\frac{11\sqrt{5}}{25}$B.$\frac{\sqrt{5}}{5}$C.-$\frac{\sqrt{5}}{5}$D.-$\frac{11\sqrt{5}}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图1,直角梯形ABCD中,∠A=∠B=90°,AD∥BC,AD=2,AB=3,BC=6,把直角梯形ABCD绕边AB旋转一周得到一个旋转体,求:
(1)旋转体的表面积,
(2)旋转体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.下列命题:
①如果函数f(x)对任意的x∈R,都有f(a+x)=f(a-x)(a为常数),那么函数f(x)必为偶函数;
②如果函数f(x)对任意的x∈R,满足f(x+2)=-f(x),那么函数f(x)是周期函数;
③如果函数f(x)对任意x1,x2∈R,且x1≠x2,都有(x1-x2)[f(x1)-f(x2)]>0,那么f(x)在R上是增函数;
④函数y=f(x)和函数y=f(x-1)+2的图象一定不会重合.
其中真命题的序号是②③.

查看答案和解析>>

同步练习册答案