精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=lg($\sqrt{1+4{x}^{2}}$-2x)+$\frac{1}{2}$,则f(lg2)+f(lg$\frac{1}{2}$)=(  )
A.-1B.0C.1D.2

分析 由已知条件利用对数的运算法则和函数的性质求出f(x)+f(-x)=1,由此能求出f(lg2)+f(lg$\frac{1}{2}$)的值.

解答 解:∵f(x)=lg($\sqrt{1+4{x}^{2}}$-2x)+$\frac{1}{2}$,
∴f(x)+f(-x)=[lg($\sqrt{1+4{x}^{2}}$-2x)+$\frac{1}{2}$]+[lg($\sqrt{1+4{x}^{2}}$+2x)+$\frac{1}{2}$]
=[lg($\sqrt{1+4{x}^{2}}$-2x)+lg($\sqrt{1+4{x}^{2}}$+2x)]+1
=lg[(1+4x2-4x2)+1
=lg1+1
=1,
∴f(lg2)+f(lg$\frac{1}{2}$)=f(lg2)+f(-lg2)=1.
故选:C.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意对数运算法则和函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.要从5名男生,3名女生中选出3人作为学生代表参加社区活动,且女生人数不多于男生人数,那么不同的选法种数有40种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,有一辆汽车在一条水平的公路上向正西行驶,汽车在A点测得公路北侧山顶D的仰角为30°,汽车行驶300m后到达B点测得山顶D恰好在正北方,且仰角为45°,则山的高度CD为(  )
A.150$\sqrt{2}$B.150$\sqrt{3}$C.300$\sqrt{2}$D.300$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{(4a-3)x+5-4a(x<1)}\\{lo{g}_{a}(x-\frac{1}{2})(x≥1)}\end{array}\right.$是R上的减函数,那么a的取值范围是(  )
A.(0,$\frac{\sqrt{2}}{2}$]B.(0,$\frac{3}{4}$]C.[$\frac{\sqrt{2}}{2}$,$\frac{3}{4}$]D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某商场预计2018年第x月顾客对某种商品的需求量f(x)与x的关系近似满足:f(x)=-3x2+40x(x∈N*,1≤x≤12).该商品第x月的进货单价q(x)(单位:元)与x的近似关系是q(x)=150+2x(x∈N*,1≤x≤12),该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,试问商场2018年第几月份销售该商品的月利润最大,最大月利润为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某班的课桌分4个大组摆放,每大组课桌数相同,甲、乙均为该班学生,则甲、乙两人的课桌在同一大组的概率是(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)图1为某几何体的三视图,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,求该几何体的表面积. 
(2)图2为某几何体三视图,已知三角形的三边长与圆的直径均为2,求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.直棱柱ABC-A1B1C1中,∠ACB=90°,AB=2,AC=1,AA1=3,求:三棱锥B1一ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列3个命题:
(1)函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;
(2)若函数f(x)=ax2+bx+2与x轴没有交点,则b2-8a<0且a>0;
(3)y=x2-2|x|-3的递增区间为[1,+∞).
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案