【题目】为调查宜昌一中高二年级男生的身高状况,现从宜昌一中高二年级中随机抽取100名男生作为样本,下图是样本的身高频率分布直方图(身高单位:cm).
(1)用样本频率估计高二男生身高在180cm及以上概率,并根据图中数据估计宜昌一中高二男生的平均身高;
(2)在该样本中,求身高在180cm及以上的同学人数,利用分层抽样的方法再从身高在180cm及以上的两组同学(180~185,185~190)中选出3名同学,应该如何选取;
(3)在该样本中,从身高在180cm及以上的同学中随机挑选3人,这3人的身高都在185cm及以上的概率有多大?
【答案】(1),;(2)在180cm至185cm一组内随机选2人、在185cm至190cm一组内随机选1人;(3)
【解析】
(1)根据图中数据直接计算即可
(2)样本中,180cm至185cm一组频率为0.1,其人数为人,185cm至190cm一组频率为0.05,其人数为人,然后即可算出答案
(3)分别算出总的个数和这3人的身高都在185cm及以上的个数,然后相比即可得出答案
(1)样本中180cm及以上的频率为,
所以高二男生身高在180cm及以上的概率为;
高二男生平均身高为cm.
(2)样本中,180cm至185cm一组频率为0.1,其人数为人,
185cm至190cm一组频率为0.05,其人数为人,
两组合计共15人,采用分层抽样选3人,应在180cm至185cm一组内随机选2人、
在185cm至190cm一组内随机选1人;
(3)样本中身高在180cm及以上共15人,
从中随机抽选3人的所有选法为种,
身高在185cm及以上的人数为5,
从中随机抽选3人的所有选法为种,
故身高都在185cm及以上的概率为.
科目:高中数学 来源: 题型:
【题目】已知函数的部分图象如图所示:
(I)求的解析式及对称中心坐标;
(Ⅱ)将的图象向右平移个单位,再将横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数的图象,求函数在上的单调区间及最值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器。现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:
维修次数 | 0 | 1 | 2 | 3 |
台数 | 5 | 10 | 20 | 15 |
以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X表示这2台机器超过质保期后延保的两年内共需维修的次数。
(1)求X的分布列;
(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,为自然对数的底数).
(1)若曲线在点处的切线与直线垂直,求的单调区间;
(2)若函数有两个极值点,求实数的取值范围;
(3)证明:当时,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com