精英家教网 > 高中数学 > 题目详情
4.若对任意x∈R,f′(x)=4x3,f(1)=-1,则f(x)=(  )
A.-x4B.-3x4+2C.x4-2D.4x4-5

分析 通过导函数的解析式求出原函数的解析式的通项,再利用f(1)=-1求出解析式.

解答 解:∵f′(x)=4x3
∴f(x)=x4+c而f(1)=-1,
则c=-2,
则f(x)=x4-2.
故选:C

点评 本题考查了导数的运算,已知导函数求原函数解析式,逆向求解的方法,本题属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设f(x)=$\frac{x}{2x+2}$(x>0),计算观察以下格式:
f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),f4(x)=f(f3(x)),…
根据以上事实得到当n∈N*时,fn(1)=$\frac{1}{3•{2}^{n}-2}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在多面体ABCDEF中,底面ABCD是菱形,AB=2,∠DAB=60°,EF∥AC,EF=$\sqrt{3}$.
(Ⅰ)求证:FC∥平面BDE;
(Ⅱ)若EA=ED,求证:AD⊥BE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.数列1,$\frac{1}{1+2}$,$\frac{1}{1+2+3}$,…,$\frac{1}{1+2+3+…+n}$的前n项和为$\frac{9}{5}$,则正整数n的值为(  )
A.6B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的通项公式an=$\left\{\begin{array}{l}{{2}^{n}-1,n为奇数}\\{{2}^{n},n为偶数}\end{array}\right.$,则数列{an}的前n项和Sn=$\left\{\begin{array}{l}{{2}^{n+1}-2-\frac{n}{2},n为偶数}\\{{2}^{n+1}-3-\frac{n-1}{2},n为奇数}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.根据如图的程序框图,当输入x为2017时,输出的y为28,则判断框中的条件可以是(  )
A.x≥0?B.x≥1?C.x≥-1?D.x≥-3?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,在正方体ABCD-A1B1C1D1中,棱AB的中点为P,若光线从点P出发,依次经三个侧面BCC1B1,DCC1D1,ADD1A1反射后,落到侧面ABB1A1(不包括边界),则入射光线PQ与侧面BCC1B1所成角的正切值的范围是(  )
A.($\frac{3}{4}$,$\frac{5}{4}$)B.($\frac{2\sqrt{17}}{17}$,4)C.($\frac{\sqrt{5}}{5}$,$\frac{3}{2}$)D.($\frac{3\sqrt{5}}{10}$,$\frac{5}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.理科竞赛小组有9名女生、12名男生,从中随机抽取一个容量为7的样本进行分析.
(Ⅰ)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可)
(Ⅱ)如果随机抽取的7名同学的物理、化学成绩(单位:分)对应如表:
 学生序号 1 2 3 4 5 6 7
 物理成绩 65 70 75 81 85 87 93
 化学成绩 72 68 80 85 90 86 91
规定85分以上(包括85份)为优秀,从这7名同学中再抽取3名同学,记这3名同学中物理和化学成绩均为优秀的人数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.三次函数f(x)=ax3-$\frac{3}{2}$x2+2x+1的图象在点(1,f(1))处的切线与x轴平行,则实数a=(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.2

查看答案和解析>>

同步练习册答案