精英家教网 > 高中数学 > 题目详情
11.设f(x)=$\frac{x}{2x+2}$(x>0),计算观察以下格式:
f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),f4(x)=f(f3(x)),…
根据以上事实得到当n∈N*时,fn(1)=$\frac{1}{3•{2}^{n}-2}$(n∈N*).

分析 根据已知中函数的解析式,归纳出函数解析中分母系数的变化规律,进而得到答案.

解答 解:由已知中设函数f(x)=$\frac{x}{2x+2}$(x>0),观察:
f1(x)=f(x)=$\frac{x}{2x+2}$,
f2(x)=f(f1(x))=$\frac{x}{6x+4}$;
f3(x)=f(f2(x))=$\frac{x}{14x+8}$.
f4(x)=f(f3(x))=$\frac{x}{30x+16}$

归纳可得:fn(x)=$\frac{x}{({2}^{n+1}-2)x+{2}^{n}}$,(n∈N*
∴fn(1)=$\frac{1}{3•{2}^{n}-2}$(n∈N*),
故答案为$\frac{1}{3•{2}^{n}-2}$(n∈N*).

点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在等比数列{an}中,首项a1=1,若数列{an}的前n项之积为Tn,且T5=1024,则该数列的公比的值为(  )
A.2B.-2C.±2D.±3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=Asin({ωx+φ})({A>0,ω>0,|φ|<\frac{π}{2}})$的部分图象如图所示,将函数y=f(x)的图象向左平移$\frac{4π}{3}$个单位,得到函数y=g(x)的图象,则函数y=g(x)在区间$[{\frac{π}{2},\frac{5π}{2}}]$上的最大值为(  )
A.3B.$\frac{{3\sqrt{3}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知直线ax+by-8=0(a>0,b>0)被圆x2+y2-2x-4y=0截得的弦长为2$\sqrt{5}$,则ab的最大值是(  )
A.$\frac{5}{2}$B.4C.$\frac{9}{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.△ABC中,∠C=90°,且CA=3,点M满足$\overrightarrow{BM}$=2$\overrightarrow{MA}$,则$\overrightarrow{CM}$•$\overrightarrow{CA}$的值为(  )
A.3B.6C.9D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知复数z=$\frac{3-i}{1+i}$,其中i为虚数单位,则复数z的模是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{-x+m,x<0}\\{{x}^{2}-1,x≥0}\end{array}\right.$其中m>0,若函数y=f(f(x))-1有3个不同的零点,则m的取值范围是(0,$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某超市经营一批产品,在市场销售中发现此产品在30天内的日销售量P(件)与日期t(1≤t≤30,t∈N+))之间满足P=kt+b,已知第5日的销售量为55件,第10日的销售量为50件.
(1)求第20日的销售量;                
(2)若销售单价Q(元/件)与t的关系式为$Q=\left\{\begin{array}{l}t+20,1≤t<25\\ 80-t,25≤t≤30\end{array}\right.(t∈{N^+})$,求日销售额y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若对任意x∈R,f′(x)=4x3,f(1)=-1,则f(x)=(  )
A.-x4B.-3x4+2C.x4-2D.4x4-5

查看答案和解析>>

同步练习册答案