精英家教网 > 高中数学 > 题目详情
16.不论m为何实数,直线(2m+1)x+(m+1)y-m-1=0与圆x2+y2-2ax+a2-2a-4=0恒有公共点,则实数a的取值范围是(  )
A.-2≤a≤2B.0≤a≤2C.-1≤a≤3D.1≤a≤3

分析 直线(2m+1)x+(m+1)y-m-1=0与曲线x2+y2-2ax+a2-2a-4=0恒有交点,说明直线系过的定点必在圆上或圆内.

解答 解:直线(2m+1)x+(m+1)y-m-1=0过(0,1)点的直线系,
曲线x2+y2-2ax+a2-2a-4=0表示圆圆心(a,0),半径为:$\sqrt{4+2a}$,
直线与曲线x2+y2-2ax+a2-2a-4=0恒有交点,必须定点在圆上或圆内,
即:$\sqrt{{a}^{2}+1}≤\sqrt{4+2a}$,所以,-1≤a≤3
故选:C.

点评 本题考查直线与圆的位置关系,点与圆的位置关系,两点间的距离公式,直线系等知识,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.设集合A={1,2,3,4},B={1,3,5,7},则A∩B={1,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a>0,b>0,a,b,-2成等差数列,又a,b,-2适当排序后也可成等比数列,则a+b的值等于(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一只船自西向东匀速航行,上午10时到达灯塔P的南偏西75°距灯塔64海里的M处,下午2时到达这座灯塔东南方向的N处,则这只船航行的速度(单位:海里/小时)(  )
A.$32\sqrt{6}$B.$8\sqrt{6}$C.$32\sqrt{3}$D.$8\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.方程|x2-2x|=m有两个不相等的实数根,则m的取值范围是(  )
A.0<m<1B.m≥1C.m≤-1或m=0D.m>1或m=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知全集U=z,A={x|x2-x-2<0,x∈Z},B={-1,0,1,2},则图中阴影部分所表示的集合等于(  )
A.{-1,2}B.{-1,0}C.{0,1}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知定义在R上的单调函数f(x)满足对任意的x1,x2,都有f(x1+x2)=f(x1)+f(x2)成立.若正实数a,b满足f(a)+f(2b-1)=0,则$\frac{1}{a}+\frac{2}{b}$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在如图所示的三棱锥ABC-A1B1C1中,D,E分别是BC,A1B1的中点.
(1)求证:DE∥平面ACC1A1
(2)若△ABC为正三角形,且AB=AA1,M为AB上的一点,$AM=\frac{1}{4}AB$,求直线DE与直线A1M所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若圆x2+(y-2)2=1与椭圆$\frac{x^2}{m}$+$\frac{y^2}{n}$=1的三个交点构成等边三角形,则该椭圆的离心率的值为$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

同步练习册答案