精英家教网 > 高中数学 > 题目详情
已知集合P={x|-2≤x≤5},Q={x|k+1≤x≤2k-1}满足P∩Q=Q,求实数k的取值范围.
分析:由已知中集合P={x|-2≤x≤5},Q={x|k+1≤x≤2k-1}满足P∩Q=Q,即Q⊆P,我们分Q=∅⊆P和Q≠∅⊆P两种情况,分别求出满足条件的实数k的取值范围,最后综合讨论结果,即可得到答案.
解答:解:∵P∩Q=Q
∴Q⊆P
(1)当k+1>2k-1,即k<2时,Q=∅⊆P,满足条件;
(2)当k+1≤2k-1,即k≥2时,
k+1≥-2
2k-1≤5

解得-3≤k≤3,此时2≤k≤3;
综上所述,实数k的取值范围为k≤3.
点评:本题考查的知识点是集合关系中的参数取值问题,其中根据集合包含关系的定义,构造关于k的不等式组,是解答本题的关键,解答中易忽略Q=∅时,也满足条件,而错解为2≤k≤3.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合P={x|1≤x≤10,x∈N },集合Q={ x|x2+x-6≤0,x∈R },则P∩Q=
{1,2}
{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合P={(x,y)|y=
2-x2
}
,Q={(x,y)|y=-x+m},若P∩Q≠∅,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列从P到Q的各对应关系f不是函数的是
.(填序号)
f:x→y=
1
2
x
;  ②f:x→y=
1
3
x
;  ③f:x→y=
2
3
x
; ④f:x→y=
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合P={x|2≤x≤7},Q={x|x2-x-6=0,x∈R},则集合P∩Q是
{3}
{3}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合P={x|x2=1},集合Q={x|ax=1},若P∩Q=Q,那么a的值是
1或-1或0
1或-1或0

查看答案和解析>>

同步练习册答案