精英家教网 > 高中数学 > 题目详情
有甲、乙两位射击运动员进行射击测试,每人各射击10次,图1、图2分别是甲、乙两人射击命中环数分布的条形图,由条形图判断下列命题正确的是(  )
A、总体上甲比乙的射击命中能力更强,但乙的稳定性更好
B、总体上乙比甲的射击命中能力更强,但甲的稳定性更好
C、总体上甲、乙两人的射击命中能力基本相当,但乙的稳定性更好
D、总体上甲、乙两人的射击命中能力基本相当,但甲的稳定性更好
考点:极差、方差与标准差,众数、中位数、平均数
专题:概率与统计
分析:根据频率分布直方图,求出甲、乙二人的平均数和方差,通过比较可以得出结论.
解答: 解:根据频率分布直方图,得
甲的平均数是
.
x
=7×0.4+8×0.3+9×0.2+10×0.1=8,
方差是s2=0.4×(7-8)2+0.3×(8-8)2+0.2×(9-8)2+0.1×(10-8)2=1;
乙的平均数是
.
x
=0.2×6+0.2×7+0.2×8+0.2×9+0.2×10=8,
方差是s2=0.2×(6-8)2+0.2×(7-8)2+0.2×(8-8)2+0.2×(9-8)2+0.2×(10-8)2=2;
.
x
=
.
x
s2x2
∴甲、乙两人的射击命中能力基本相当,但甲的稳定性更好.
故选:D.
点评:本题考查了频率分布直方图的应用问题,也考查了求平均数与方差的问题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数f(x)=sin(πx+
π
2
),下列命题正确的是(  )
A、f(x)是周期为2的偶函数
B、f(x)是周期为π的偶函数
C、f(x)是周期为2的奇函数
D、f(x)是周期为π的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

为了得到函数y=cos(2x+
π
3
)的图象,只需将函数y=sin2x的图象(  )
A、向左平移
7
12
π个长度单位
B、向右平移
7
12
π个长度单位
C、向左平移
7
6
π个长度单位
D、向右平移
7
6
π个长度单位

查看答案和解析>>

科目:高中数学 来源: 题型:

已知离散型随机变量X的概率分布列为
X 1 5 10
P 0.5 m 0.2
则其方差DX等于(  )
A、4B、8C、10D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上可导,且(x-1)•f′(x)>0,则下列结论正确的是(  )
A、x=1一定是函数f(x)的极大值点
B、x=1一定是函数f(x)的极小值点
C、x=1不是函数f(x)的极值点
D、x=1不一定是函数f(x)的极值点

查看答案和解析>>

科目:高中数学 来源: 题型:

观察数列1,
1
2
2
1
1
3
2
2
3
1
1
4
2
3
3
2
4
1
,…,则数
2
6
将出现在此数列(  )
A、第21项B、第22项
C、第23项D、第24项

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:x=2,q:0<x<3,则p是q的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分,又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

2014年,世界羽联汤姆斯杯在印度首都新德里进行,决赛的比赛规则是:五场三胜制,第一、三、五场安排单打,第二、四场安排双打,每场比赛无平局.甲队在决赛中遇到乙队,已知每场单打比赛甲队赢的概率都为
2
3
,每场双打比赛甲队赢的概率都为
1
2

(Ⅰ)求甲队最终以3:1获胜的概率;
(Ⅱ)求乙队获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

求cosθ(1-sinθ)的最值.

查看答案和解析>>

同步练习册答案