精英家教网 > 高中数学 > 题目详情
4.抛物线y=2x2的焦点坐标是(  )
A.($\frac{1}{2}$,0)B.(-$\frac{1}{2}$,0)C.(0,$\frac{1}{8}$)D.(0,-$\frac{1}{8}$)

分析 直接利用抛物线的简单性质写出结果即可.

解答 解:抛物线y=2x2,化为x2=$\frac{1}{2}y$,
它的焦点坐标为:(0,$\frac{1}{8}$).
故选:C.

点评 本题考查抛物线的简单性质的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.两同心圆x2+y2=25和x2+y2=16,从外圆上一点作内圆的两条切线,两条切线的夹角为(  )
A.arctan$\frac{4}{3}$B.2arctan$\frac{4}{3}$C.π-arctan$\frac{4}{3}$D.π-2arctan$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求函数f(x)=4x-2x+1,x∈[-3,2]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若a>1,b>1,log2a•log2b=16,则log2(ab)的最小值为(  )
A.-4B.8C.-8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.给出四个结论:(1)若a>b>0,且m>0,则$\frac{b}{a}$<$\frac{b+m}{a+m}$;(2)若a,b∈R,则$\frac{{a}^{2}+{b}^{2}}{2}$≥($\frac{a+b}{2}$)2;(3)若a,b∈R,则a2-2ab+2b2<2b-2;(4)若a>0,b>0,则aabb≥abba,其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.△ABC中,sinB=sinAcosC,其中A、B、C是△ABC的三内角,则△ABC是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=$\frac{lnx}{x}$的减区间是(e,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=x3-3x2+2,x∈[-1,1]的最大值2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{x}{4}$+$\frac{a}{x}$-lnx-$\frac{3}{2}$,其中a∈R,且曲线y=f(x在点(1,f(1))处的切线垂直于直线y=$\frac{1}{2}$x.
(1)求a的值及在点(1,f(1))处的切线方程;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

同步练习册答案