精英家教网 > 高中数学 > 题目详情
5.函数f(x)是定义在(-∞,0)上的减函数,则不等式f(x-1)>f(2x+1)的解集{x|-2<x<-$\frac{1}{2}$}.

分析 先由函数定义域得x-1<0且2x+1<0,然后由函数单调递减去函数符号得x-1<2x+1,列不等式组求解即可.

解答 解:由f(x)是定义在(-∞,0)上的减函数,f(x-1)>f(2x+1),
则$\left\{\begin{array}{l}{x-1<0}\\{2x+1<0}\\{x-1<2x+1}\end{array}\right.$,解之得-2<x<-$\frac{1}{2}$,
不等式的解集为{x|-2<x<-$\frac{1}{2}$}.
故答案为:{x|-2<x<-$\frac{1}{2}$}.

点评 本题是抽象函数的题目,比较基础,利用函数的单调性去函数符号,但要注意函数的定义域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知集合A={1,2,3},B={m,3,6},A∩B={2,3},则实数m的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一元二次不等式ax2+bx+c<0的解集为R,则必有(  )
A.$\left\{\begin{array}{l}{a>o}\\{{b}^{2}-4ac>0}\end{array}\right.$B.$\left\{\begin{array}{l}{a<0}\\{{b}^{2}-4ac<0}\end{array}\right.$C.$\left\{\begin{array}{l}{a>0}\\{{b}^{2}-4ac<0}\end{array}\right.$D.$\left\{\begin{array}{l}{a<0}\\{{b}^{2}-4ac>0}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.画出函数y=$\sqrt{{x}^{2}-2x+1}$+$\sqrt{(3+x)^{2}}$的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合M={(x,y)|2x+y-4=0},N={(x,y)|x2+y2+2mx+2ny=0},若M∩N≠∅,则m2+n2的最小值(  )
A.$\frac{4}{5}$B.$\frac{3}{4}$C.(6-2$\sqrt{5}$)D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.从x个不同的元素中,取出3个元素的组合数是20,则x的值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{{e}^{x}}{{x}^{2}-mx+1}$
(Ⅰ)若m∈(-2,2),求函数y=f(x)的单调区间;
(Ⅱ)若m∈(0,$\frac{1}{2}$],则当x∈[0,m+1)时,函数y=f(x)的图象是否总存在直线y=x上方?请写出判断过程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.一枚硬币连续掷2次,求:
(1)写出它的基本事件空间;
(2)有一次正面朝上的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知圆x2+y2-2kx-2y=0与直线x+y=2k相切,则k等于-1.

查看答案和解析>>

同步练习册答案