精英家教网 > 高中数学 > 题目详情
20.已知集合M={(x,y)|2x+y-4=0},N={(x,y)|x2+y2+2mx+2ny=0},若M∩N≠∅,则m2+n2的最小值(  )
A.$\frac{4}{5}$B.$\frac{3}{4}$C.(6-2$\sqrt{5}$)D.$\frac{5}{4}$

分析 由M∩N≠∅,可得直线2x+y-4=0与圆x2+y2+2mx+2ny=0有交点,即圆心(-m,-n)到直线2x+y-4=0的距离不大于半径,建立不等式,三角换元,即可求出m2+n2的最小值.

解答 解:由题意,可知集合M={(x,y)|2x+y-4=0},N={(x,y)|x2+y2+2mx+2ny=0},且M∩N≠∅,
∴表示直线2x+y-4=0与圆x2+y2+2mx+2ny=0有交点,即圆心(-m,-n)到直线2x+y-4=0的距离不大于半径,
∴d=$\frac{|2m+n+4|}{\sqrt{{2}^{2}+{1}^{2}}}$≤$\sqrt{{m}^{2}+{n}^{2}}$,
设m2+n2=r2,m=rcosα,n=rsinα,
∴-$\sqrt{5}$r≤2rcosα+rsinα+4≤$\sqrt{5}$r,
∴r≥$\frac{4}{\sqrt{5}-2cosα-sinα}$
∴r≥$\frac{4}{2\sqrt{5}}$,
∴r2≥$\frac{4}{5}$,
∴m2+n2的最小值为$\frac{4}{5}$.
故选:A.

点评 本题考查的知识点是集合的交集的定义及运算,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.集合A={x|x=2n,n∈Z},B={1,2,3},则A∩B的子集的个数为(  )
A.2B.3C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)是定义在(0,+∞)上的函数,且对任意x,y∈(0,+∞),都有f(xy)=f(x)+f(y),f(2)=1,求f(4),f(8)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程只有一个实数根;②当m≠0时,方程有两个不相等的实数根;③无论m取何值,方程都有一个负数根,其中正确的是①③(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若(1-x)3(x2-2x+3)3=a0+a1x+a2x2+…+a9x9,则|a0|+|a1|+|a2|+…+|a9|的值等于1728.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)是定义在(-∞,0)上的减函数,则不等式f(x-1)>f(2x+1)的解集{x|-2<x<-$\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx+$\frac{2a}{x}$,a∈R.
(Ⅰ)若函数f(x)在[2,+∞)上是增函数,求实数a的取值范围;
(Ⅱ)若x∈[1,e],求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若等边△ABC的边长为2$\sqrt{3}$,平面内一点M满足$\overrightarrow{CM}$=$\frac{1}{6}$$\overrightarrow{CB}$-$\frac{2}{3}$$\overrightarrow{AC}$,则$\overrightarrow{MA}•\overrightarrow{MB}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若A(-4,2),B(6,-4),C(12,6),D(2,12),下面四个结论正确的个数是(  )
①AB∥CD;
②AB⊥AD;
③|AC|=|BD|;
④AC⊥BD.
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案