分析 将$\overrightarrow{MA}$,$\overrightarrow{MB}$分别用$\overrightarrow{CB}$,$\overrightarrow{CA}$表示,利用等边三角形对应向量的运算解答.
解答 解:等边△ABC的边长为2$\sqrt{3}$,平面内一点M满足$\overrightarrow{CM}$=$\frac{1}{6}$$\overrightarrow{CB}$-$\frac{2}{3}$$\overrightarrow{AC}$,$\overrightarrow{MA}$=$\frac{1}{6}\overrightarrow{BC}+\frac{1}{3}\overrightarrow{AC}$,$\overrightarrow{MB}=\frac{2}{3}\overrightarrow{AC}+\frac{5}{6}\overrightarrow{CB}$,
所以$\overrightarrow{MA}•\overrightarrow{MB}$=$(\frac{1}{6}\overrightarrow{BC}+\frac{1}{3}\overrightarrow{AC})(\frac{2}{3}\overrightarrow{AC}+\frac{5}{6}\overrightarrow{CB})$=$-\frac{5}{36}{\overrightarrow{BC}}^{2}+\frac{2}{9}{\overrightarrow{AC}}^{2}-\frac{1}{6}\overrightarrow{AC}•\overrightarrow{BC}$=$-\frac{5}{36}×12+\frac{2}{9}×12+\frac{1}{6}×12×\frac{1}{2}$=2;
故答案为:2.
点评 本题考查了平面向量的运算;关键是将所求转化为利用等边三角形的边对应的向量表示;注意向量的夹角与三角形的内角相等或者互补.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | $\frac{3}{4}$ | C. | (6-2$\sqrt{5}$) | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com