精英家教网 > 高中数学 > 题目详情
8.(Ⅰ)求不等式2x+2|x|≥2$\sqrt{2}$的解集;
(Ⅱ)已知实数m>0,n>0,求证:$\frac{a^2}{m}$+$\frac{b^2}{n}$≥$\frac{{{{(a+b)}^2}}}{m+n}$.

分析 (Ⅰ)讨论①当x≥0时,②当x<0时,去绝对值,运用指数函数的单调性,计算即可得到所求解集;
(Ⅱ)运用作差法,因式分解,配方,由完全平方式非负,即可得证.

解答 解:(Ⅰ)①当x≥0时,有${2^x}+{2^x}≥2\sqrt{2}$,
由${2^x}\;≥\;{2^{\frac{1}{2}}}$,解得$x≥\frac{1}{2}$.
②当x<0时,有${2^x}+{2^{-x}}≥2\sqrt{2}$,
即${({2^x})^2}-2\sqrt{2}•{2^x}+1≥0$.
解得${2^x}≤\sqrt{2}-1$或${2^x}≥\sqrt{2}+1$,
又x<0,解得$x≤{log_2}(\sqrt{2}-1)$,
则原不等式解集为{x|$x\;≥\;\frac{1}{2}$或$x\;≤\;{log_2}(\sqrt{2}-1)$}.              
(Ⅱ)证明:$\frac{a^2}{m}+\frac{b^2}{n}-\frac{{{{(a+b)}^2}}}{m+n}=\frac{{n{a^2}+m{b^2}}}{mn}-\frac{{{{(a+b)}^2}}}{m+n}=\frac{{(m+n)(n{a^2}+m{b^2})-mn{{(a+b)}^2}}}{mn(m+n)}$
=$\frac{{{n^2}{a^2}+{m^2}{b^2}-2mnab}}{mn(m+n)}$=$\frac{{{{(na-mb)}^2}}}{mn(m+n)}\;≥\;0$,
则$\frac{a^2}{m}+\frac{b^2}{n}\;≥\;\frac{{{{(a+b)}^2}}}{m+n}$,当且仅当na=mb时等号成立.

点评 本题考查不等式的解法和证明,注意运用分类讨论和作差法,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程只有一个实数根;②当m≠0时,方程有两个不相等的实数根;③无论m取何值,方程都有一个负数根,其中正确的是①③(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若等边△ABC的边长为2$\sqrt{3}$,平面内一点M满足$\overrightarrow{CM}$=$\frac{1}{6}$$\overrightarrow{CB}$-$\frac{2}{3}$$\overrightarrow{AC}$,则$\overrightarrow{MA}•\overrightarrow{MB}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若tanθ=-3,则sinθ(sinθ-2cosθ)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设x∈R,f(x)=($\frac{1}{3}$)|x|,若不等式f(x)-k≤-f(2x)对于任意的x∈R都恒成立,则实数k的取值范围是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2+2x+2,x∈[a,a+2],a∈R.
(1)求函数的最小值;
(2)求函数的最大值;
(3)若f(x)的最小值为2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若A(-4,2),B(6,-4),C(12,6),D(2,12),下面四个结论正确的个数是(  )
①AB∥CD;
②AB⊥AD;
③|AC|=|BD|;
④AC⊥BD.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.己知函数f(x)=x2-2x-8
(1)求不等式f(x)<0的解集:;
(2)若对一切x>2,均有f(x)≥(m+2)x-m-15成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在直角坐标系xOy中,已知△ABC的顶点A(-6,0)和C(6,0),若顶点B在双曲线$\frac{x^2}{25}$-$\frac{y^2}{11}$=1的左支上,则$\frac{|BC|-|AB|}{|AC|}$=(  )
A.$\frac{5}{6}$B.$-\frac{5}{6}$C.$\frac{4}{3}$D.$\frac{3}{5}$

查看答案和解析>>

同步练习册答案