| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
分析 首先由点的坐标顶点向量的坐标,然后进行坐标的运算判断即可.
解答 解:由已知得到$\overrightarrow{AB}$=(10,-6);$\overrightarrow{CD}$=(-10,6);$\overrightarrow{AD}$=(6,10);$\overrightarrow{AC}$=(16,4),$\overrightarrow{BD}$=(-4,16),$\overrightarrow{AC}•\overrightarrow{BD}$
所以$\overrightarrow{AB}=-\overrightarrow{CD}$,$\overrightarrow{AB}•\overrightarrow{AD}$=60-60=0,$|\overrightarrow{AC}|=\sqrt{1{6}^{2}+{4}^{2}}=|\overrightarrow{BD}|$,$\overrightarrow{AC}•\overrightarrow{BD}$=-64+64=0,
所以①AB∥CD;
②AB⊥AD;
③|AC|=|BD|;
④AC⊥BD,都正确;
故选:D.
点评 本题考查了利用平面向量的位置关系判断平面几何的直线与直线的位置关系,体现了向量的工具性.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | $\frac{3}{4}$ | C. | (6-2$\sqrt{5}$) | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{{{({-1})}^n}}}{n}$ | B. | $\frac{{{{({-1})}^n}}}{n+1}$ | C. | $\frac{{{{({-1})}^{n+1}}}}{n+1}$ | D. | $\frac{{{{({-1})}^{n+1}}}}{n}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{20}$m/s | B. | $\frac{7}{24}$m/s | C. | $\frac{7}{22}$m/s | D. | $\frac{1}{2}$m/s |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com