精英家教网 > 高中数学 > 题目详情
8.关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程只有一个实数根;②当m≠0时,方程有两个不相等的实数根;③无论m取何值,方程都有一个负数根,其中正确的是①③(填序号).

分析 由二次函数的性质,结合图象,判定定理,得到根的分布.

解答 解::①当m=0时,方程变为x+1=0,∴方程只有1个根,
②当m≠0时,方程的判别式为△=4m2-4m+1=(2m-1)2≥0,
∴方程可能有两个不相等的实数根或者有两个相等的实数根,
③无论m取何值,m=0时,方程由一个根是x=-1
m≠0时,方程由一个定根是x=-1,
∴方程都有一个负数根,
故本题的答案是:①③.

点评 本题考查二次函数的性质,数形结合,判定定理,得到根的分布.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知平面向量$\overrightarrow{a}$=($\sqrt{3}$sinx,-1),$\overrightarrow{b}$=(2cosx,1-2cos2x),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求函数f(x)的最小正周期,并写出f(x)的对称轴方程;
(2)当x∈(-$\frac{5π}{6}$,-$\frac{π}{3}$)时,设经过函数f(x)图象上任意不同两点的直线的斜率为k,试判断k的符号,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知x=$\frac{1}{2}$,y=$\frac{1}{3}$,求$\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}$-$\frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一元二次不等式ax2+bx+c<0的解集为R,则必有(  )
A.$\left\{\begin{array}{l}{a>o}\\{{b}^{2}-4ac>0}\end{array}\right.$B.$\left\{\begin{array}{l}{a<0}\\{{b}^{2}-4ac<0}\end{array}\right.$C.$\left\{\begin{array}{l}{a>0}\\{{b}^{2}-4ac<0}\end{array}\right.$D.$\left\{\begin{array}{l}{a<0}\\{{b}^{2}-4ac>0}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.sin(19π+$\frac{π}{3}$)的值是(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.画出函数y=$\sqrt{{x}^{2}-2x+1}$+$\sqrt{(3+x)^{2}}$的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合M={(x,y)|2x+y-4=0},N={(x,y)|x2+y2+2mx+2ny=0},若M∩N≠∅,则m2+n2的最小值(  )
A.$\frac{4}{5}$B.$\frac{3}{4}$C.(6-2$\sqrt{5}$)D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{{e}^{x}}{{x}^{2}-mx+1}$
(Ⅰ)若m∈(-2,2),求函数y=f(x)的单调区间;
(Ⅱ)若m∈(0,$\frac{1}{2}$],则当x∈[0,m+1)时,函数y=f(x)的图象是否总存在直线y=x上方?请写出判断过程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(Ⅰ)求不等式2x+2|x|≥2$\sqrt{2}$的解集;
(Ⅱ)已知实数m>0,n>0,求证:$\frac{a^2}{m}$+$\frac{b^2}{n}$≥$\frac{{{{(a+b)}^2}}}{m+n}$.

查看答案和解析>>

同步练习册答案