分析 若不等式f(x)+f(2x)≤k对于任意的x∈R恒成立,只要(f(x)+f(2x))min≤k对于任意的x∈R恒成立即可,将f(x)的解析式代入,利用换元法转化为二次函数求最值即可
解答 解:∵f(x)=($\frac{1}{3}$)|x|,
∴f(2x)=($\frac{1}{3}$)|2x|,
∵不等式f(x)+f(2x)≤k对于任意的x∈R恒成立
令t=($\frac{1}{3}$)|x|=t∈(0,1],则y=t2+t(0<t≤1)
∵对称轴t=-$\frac{1}{2}$,则当t=1时,ymax=2,
∴k≥2,
故答案为:[2,+∞)
点评 本题考查含有绝对值的函数的图象的做法和不等式恒成立为题,题目难度不大,属基本题型,基本方法的考查
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{{{({-1})}^n}}}{n}$ | B. | $\frac{{{{({-1})}^n}}}{n+1}$ | C. | $\frac{{{{({-1})}^{n+1}}}}{n+1}$ | D. | $\frac{{{{({-1})}^{n+1}}}}{n}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{20}$m/s | B. | $\frac{7}{24}$m/s | C. | $\frac{7}{22}$m/s | D. | $\frac{1}{2}$m/s |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com