精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
2
sin2x-cos2x-
1
2

(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,且c=
3
,f(C)=0,若sinB=2sinA,求a、b的值.
考点:正弦定理,三角函数中的恒等变换应用,余弦定理
专题:三角函数的求值
分析:(Ⅰ)利用三角恒等变换化简函数的解析式为 f(x)=sin(2x-
π
6
)-1
,令2kπ-
π
2
≤2x-
π
6
≤2kπ+
π
2
,求得x的范围,可得函数的单调递增区间.
(Ⅱ)设△ABC中,由f(C)=0,可得sin(2C-
π
6
)=1
,根据C的范围求得角C的值,再利用正弦定理和余弦定理求得a、b的值.
解答: 解:( I)f(x)=
3
2
sin2x-cos2x-
1
2
=
3
2
sin2x-
1+cos2x
2
-
1
2
=
3
2
sin2x-
1
2
cos2x-1=sin(2x-
π
6
)-1

由2kπ-
π
2
≤2x-
π
6
≤2kπ+
π
2
,得kπ-
π
6
≤x≤kπ+
π
3
,k∈Z,
∴函数f(x)的单调递增区间为[kπ-
π
6
,kπ+
π
3
](k∈Z)

(II)由f(C)=0,得sin(2C-
π
6
)=1

∵0<C<π,∴-
π
6
<2C-
π
6
11
6
π,∴2C-
π
6
=
π
2
,∴C=
π
3

∵sinB=2sinA,由正弦定理,得
b
a
=2①.
由余弦定理,得c2=a2+b2-2abcos
π
3
,即a2+b2-ab=3②,
由①②解得a=1,b=2.
点评:本题主要考查三角恒等变换、正弦函数的单调性、正弦定理和余弦定理的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线y=kx+3与圆(x-3)2+(y-2)2=4相交于M,N两点,若|MN|=2
3
,则k的值为(  )
A、k=-
4
3
B、k=-
3
4
C、k=0或k=-
4
3
D、k=0或k=-
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=ax2+bx+c与x轴交于A(-1,0)、B(3,0),与y轴交于C点,且OC=3OA.
(1)求抛物线的函数解析式;
(2)若点P(m,n)是直线BC上方的抛物线一点,过P作PN∥OC交BC于N,设PN=h,求h关于m的函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c,若a=
5
,b=3,
5
sinC=2sinA,求sin(A+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|1-x|-|2+x|.
(Ⅰ)求f(x)的最大值;
(Ⅱ)|2t-1|≥f(x)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosθ,sinθ),向量
b
=(
3
,-1),则|2
a
-
b
|的最大值与最小值的和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某个几何体的三视图如图,根据图中标出的尺寸,可得这个几何体的外接球的表面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式
2x-1
≤x-2的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在实数范围内,不等式|2x-1|+|x+1|≥5x的解集为
 

查看答案和解析>>

同步练习册答案