【题目】有一个容量为66的样本,数据的分组及各组的频数如下:
[10.5,14.5) 2 [14.5,18.5) 4 [18.5,22.5) 9 [22.5,26.5) 18
[26.5,30.5) 11 [30.5,34.5) 12 [34.5,38.5) 8 [38.5,42.5) 2
根据样本的频率分布估计,数据落在[30.5,42.5)内的概率约是( )
A.
B.
C.
D. ![]()
科目:高中数学 来源: 题型:
【题目】设集合A={x|(x-3)(x+a)<0,a∈R},集合B={x∈Z|x2-3x-4<0}.
(1)若A∩B的子集个数为4,求a的范围;
(2)若a∈Z,当A∩B≠
时,求a的最小值,并求当a取最小值时A∪B.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义域为D的函数
,若同时满足下列条件:①
在D内单调递增或单调递减;②存在区间
,使
在
上的值域为
.那么把
称为闭函数.下列结论正确的是( )
A.函数
是闭函数
B.函数
是闭函数
C.函数
是闭函数
D.
时,函数
是闭函数
E.
时,函数
是闭函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,圆
的参数方程为
(
为参数),圆
与圆
外切于原点
,且两圆圆心的距离
,以坐标原点为极点,
轴正半轴为极轴建立极坐标系.
(1)求圆
和圆
的极坐标方程;
(2)过点
的直线
与圆
异于点
的交点分别为点
,与圆
异于点
的交点分别为点
,且
,求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
,
,其前
项和
满足
,其中
.
(1)设
,证明:数列
是等差数列;
(2)设
,
为数列
的前
项和,求证:
;
(3)设
(
为非零整数,
),试确定
的值,使得对任意
,都有
成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,
是锐角,大小为β.图中阴影区域的面积的最大值为
![]()
A. 4β+4cosβB. 4β+4sinβC. 2β+2cosβD. 2β+2sinβ
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 如图,在四棱锥
中,底面
为平行四边形,
为等边三角形,平面
平面
,
,
,
,
![]()
(Ⅰ)设
分别为
的中点,求证:
平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正三棱柱
(底面是正三角形,侧棱垂直底面)的各条棱长均相等,
为
的中点.
、
分别是
、
上的动点(含端点),且满足
.当
运动时,下列结论中正确的是______ (填上所有正确命题的序号).
![]()
①平面
平面
;
②三棱锥
的体积为定值;
③
可能为直角三角形;
④平面
与平面
所成的锐二面角范围为
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com