分析 (I)根据椭圆的性质列方程解出a,b即可;
(II)设直线l方程y=kx+3,与椭圆方程联立,求出k的取值范围和A,B坐标的关系,根据弦长公式计算|AB|,求出O到l的距离d,得出三角形的面积关于k的函数,利用换元法得出面积的最值.
解答 解:(I)由题意得$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{5}}{3}}\\{2b=4}\\{{a}^{2}-{b}^{2}={c}^{2}}\end{array}\right.$,解得a=3,b=2,c=$\sqrt{5}$.
∴椭圆方程为$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}=1$.
(II)设直线l的方程为y=kx+3,
联立方程组$\left\{\begin{array}{l}{y=kx+3}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,消元得(4+9k2)x2+54kx+45=0,
△=542k2-180(4+9k2)>0,
解得k2>$\frac{5}{9}$.
设A(x1,y1),B(x2,y2),则x1+x2=-$\frac{54k}{4+9{k}^{2}}$,x1x2=$\frac{45}{4+9{k}^{2}}$,
∴|AB|=$\sqrt{1+{k}^{2}}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}$•$\frac{12\sqrt{9{k}^{2}-5}}{4+9{k}^{2}}$.
又O到直线l的距离d=$\frac{3}{\sqrt{1+{k}^{2}}}$,
∴S△OAB=$\frac{1}{2}$|AB|•d=$\frac{18\sqrt{9{k}^{2}-5}}{4+9{k}^{2}}$.
令$\sqrt{9{k}^{2}-5}$=t,则t>0,9k2=t2+5,
∴S△AOB=$\frac{18t}{{t}^{2}+9}$=$\frac{18}{t+\frac{9}{t}}$≤$\frac{18}{2\sqrt{t•\frac{9}{t}}}$=3.当且仅当t=$\frac{9}{t}$,即t=3时取等号.
∴三角形AOB的面积的取值范围是(0,3].
点评 本题考查了椭圆的性质,直线与椭圆的位置关系,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 若m∥n,n⊥β,m?α,则α⊥β | B. | 若α⊥γ,β⊥γ,α∩β=l,则l⊥γ | ||
| C. | 若α⊥β,a?α,则a⊥β | D. | 若α⊥β,a∩β=AB,a∥α,a⊥AB,则a⊥β |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1} | B. | {1,2} | C. | {2} | D. | {0,1,2} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com