精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=lnx-1+$\frac{1}{x}$.
(1)求f(x)的单调区间;
(2)对任意x∈(0,1)∪(1,e)(其中e为自然对数的底数),都有$\frac{alnx}{x-1}$>1(a>0)恒成立,求正数a的取值范围.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)①x∈(0,1)时,问题转化为即a>$\frac{x-1}{lnx}$在(0,1)恒成立,根据函数的单调性求出a的范围,②x∈(1,e)时,问题转化为即a>$\frac{x-1}{lnx}$在(1,e)恒成立,根据函数的单调性求出a的范围,取交集即可.

解答 解:(1)f′(x)=$\frac{1}{x}$-$\frac{1}{{x}^{2}}$=$\frac{x-1}{{x}^{2}}$,x>0,
令f′(x)>0,得x>1,令f′(x)<0,得0<x<1,
∴函数f(x)在(0,1)递减,在(1,+∞)递增;
(2)∵$\frac{alnx}{x-1}$>1,∴$\frac{alnx-(x-1)}{x-1}$>0,
①x∈(0,1)时,x-1<0,则alnx<x-1在(0,1)恒成立,
即a>$\frac{x-1}{lnx}$在(0,1)恒成立,
令g(x)=$\frac{x-1}{lnx}$,x∈(0,1),则g′(x)=$\frac{lnx-1+\frac{1}{x}}{{(lnx)}^{2}}$,
由(1)得:f(x)=lnx-1+$\frac{1}{x}$在(0,1)递减,
∴f(x)>f(1)=0,∴g′(x)>0,
g(x)在(0,1)递增,
而$\underset{lim}{x→1}$$\frac{x-1}{lnx}$=$\underset{lim}{x→1}$$\frac{1}{\frac{1}{x}}$=$\underset{lim}{x→1}$x=1,
∴g(x)<1,∴a≥1;
②x∈(1,e)时,x-1>0,则alnx>x-1,
即a>$\frac{x-1}{lnx}$在(1,e)恒成立,
令h(x)=$\frac{x-1}{lnx}$,x∈(1,e),则h′(x)=$\frac{lnx-1+\frac{1}{x}}{{(lnx)}^{2}}$,
由(1)得:f(x)=lnx-1+$\frac{1}{x}$在(1,e)递增,
∴f(x)>f(1)=0,∴h′(x)>0,
h(x)在(1,e)递增,
∴h(x)<h(e)=e-1,
∴a≥e-1,
综上,a≥e-1.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设$\overrightarrow{a}$与$\overrightarrow{b}$是两个不共线向量,且向量2$\overrightarrow{a}$+k$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$共线,则k=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.经过椭圆$\frac{x^2}{2}$+y2=1的左焦点F1作倾斜角为$\frac{π}{3}$的直线l,直线l与椭圆相交于A,B两点,则AB的长为(  )
A.$\frac{{2\sqrt{2}}}{7}$B.$\frac{{4\sqrt{2}}}{7}$C.$\frac{{6\sqrt{2}}}{7}$D.$\frac{{8\sqrt{2}}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{{{e^x}-a}}{{{e^x}+a}}$(a>0)
(Ⅰ)若曲线y=f(x)在点(0,f(0))处的切线与直线x-2y+1=0平行,求a的值;
(Ⅱ)当x≥0时,f(x)≤$\frac{1}{2}$x成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{5}}{3}$,短轴长为4,过点P(0,3)引直线l顺次与椭圆交于点A、B(A在B、P之间).
(I)求椭圆方程;
(Ⅱ)O为坐标原点,求三角形AOB的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=(ax-1)ex( a∈R)在区间[0,1]上是单调增函数,则实数a的取值范围是(  )
A.(0,1)B.(0,1]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=exsinx,其中x∈R,e=2.71828…为自然对数的底数,当x∈[0,$\frac{π}{2}$]时,函数y=f(x)的图象不在直线y=kx的下方,则实数k的取值范围(  )
A.(-∞,1)B.(-∞,1]C.(-∞,e${\;}^{\frac{π}{2}}$)D.(-∞,e${\;}^{\frac{π}{2}}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=a$\sqrt{x}$+b(lnx+1)+1的图象在x=1处的切线方程为x+2y-3=0.
(Ⅰ)求a,b的值;
(Ⅱ)证明:当x>0时,恒有$\sqrt{x}$>lnx;
(Ⅲ)证明:对于任意给定的正数M,总存在正实数x0,使得当x>x0时,恒有$\sqrt{x}$>Mlnx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(1,1),则$\overrightarrow{a}$•$\overrightarrow{b}$=(  )
A.3B.2C.1D.0

查看答案和解析>>

同步练习册答案