精英家教网 > 高中数学 > 题目详情
已知向量
a
=(8,k)(k∈R),
b
=(1,3),
c
=(3,-2),且(3
a
+
b
)⊥
c
,则|
a
|=
 
考点:平面向量数量积的运算
专题:计算题,平面向量及应用
分析:运用向量的数量积的坐标表示和向量垂直的条件,求得k,再由向量的模的公式,即可得到.
解答: 解:由于向量
a
=(8,k)(k∈R),
b
=(1,3),
c
=(3,-2),
a
c
=24-2k,
b
c
=3-6=-3,
由(3
a
+
b
)⊥
c
,得3
a
c
+
b
c
=0,
即有3(24-2k)-3=0,
解得,k=
23
2

则有|
a
|=
64+(
23
2
)2
=
785
2

故答案为:
785
2
点评:本题考查向量的数量积的坐标表示,及向量垂直的条件,模的公式的运用,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC中,角A、B、C的对边分别为a、b、c,且acosC=(2b-c)cosA.
(Ⅰ)求∠A的大小;
(Ⅱ)若△ABC的外接圆半径为
2
,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:实数x满足x2-4ax+3a2>0其中a<0,命题q:实数x满足x2-x-6≤0,且p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形ABC是正三角形,给出下列等式:
①|
AB
+
BC
|=|
BC
+
CA
|
②|
AC
+
CB
|=|
BA
+
BC
|
③|
AB
+
AC
|=|
CA
+
CB
|
④|
AB
+
BC
+
AC
|=|
CB
+
BA
+
CA
|
其中正确的等式有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)对任意x,y满足f(x+y)=f(x)+f(y),且f(2)=4,则f(-1)的值为(  )
A、-3B、-2C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

y=Asin(ωx+φ)(A>0,ω>0,-π<φ<π)的最高点为P(
π
12
,3),由这个最高点到相邻最低点间的曲线与x轴交于Q(
π
3
,0),则函数表达式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线a2(x-y)+x-y+3=0的倾斜角为(  )
A、30°B、45°
C、60°D、135°

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sinx-acosx在[
π
8
π
6
]为减函数,则a的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

十个人站成一排,其中甲、乙、丙三人恰巧站在一起的概率为(  )
A、
1
15
B、
1
90
C、
1
120
D、
1
720

查看答案和解析>>

同步练习册答案