设f(x)在R上可导,其导数为f′(x),给出下列四组条件:
①p:f(x)是奇函数,q:f′(x)是偶函数;
②p:f(x)是以T为周期的函数,q:f′(x)是以T为周期的函数;
③p:f(x)在区间(-∞,+∞)上为增函数,q:f′(x)>0在(-∞,+∞)恒成立;
④p:f(x)在x0处取得极值,q:f′(x0)=0.
由以上条件中,能使p⇒q成立的序号为 ( ).
A.①②③ B.①②④ C.①③④ D.②③④
科目:高中数学 来源:2014年高考数学(理)二轮复习6-1直线与圆练习卷(解析版) 题型:选择题
如图,在直角梯形ABCD中,AD⊥AB,AB∥DC,AD=DC=1,AB=2,动点P在以点C为圆心,且与直线BD相切的圆上或圆内移动,设=λ+μ (λ,μ∈R),则λ+μ的取值范围是( ).
A.(1,2) B.(0,3) C.[1,2] D.[1,2)
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习4-1等差数列与等比数列练习卷(解析版) 题型:选择题
设等比数列{an}的公比q=2,前n项和为Sn,若S4=1,则S8= ( ).
A.17 B. C.5 D.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习3-1三角函数与三角恒等变换练习卷(解析版) 题型:填空题
已知函数f(x)=sin ωx+cos ωx(ω>0),y=f(x)的图象与直线y=2的两个相邻交点的距离等于π,则f(x)的单调递增区间是________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习2-2导数及其应用练习卷(解析版) 题型:解答题
已知f(x)=xln x,g(x)=x3+ax2-x+2.
(1)求函数f(x)的单调区间;
(2)求f(x)在区间[t,t+2](t>0)上的最小值;
(3)对一切的x∈(0,+∞),2f(x)<g′(x)+2恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习2-1函数的概念与基本初等函数练习卷(解析版) 题型:解答题
某养殖厂需定期购买饲料,已知该厂每天需要饲料200千克,每千克饲料的价格为1.8元,饲料的保管费与其他费用平均每千克每天0.03元,购买饲料每次支付运费300元.
(1)求该厂多少天购买一次饲料才能使平均每天支付的总费用最少;
(2)若提供饲料的公司规定,当一次购买饲料不少于5吨时,其价格可享受八五折优惠(即原价的85%).问:该厂是否应考虑利用此优惠条件?请说明理由.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习2-1函数的概念与基本初等函数练习卷(解析版) 题型:选择题
已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=2x-3,则f(-2)=( ).
A.1 B.-1 C. D.-
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练选修4-5练习卷(解析版) 题型:填空题
若关于实数x的不等式|x-5|+|x+3|<a无解,则实数a的取值范围是________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-7-3练习卷(解析版) 题型:选择题
通过随机询问110名性别不同的人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如下的列联表:
| 男 | 女 | 总计 |
走天桥 | 40 | 20 | 60 |
走斑马线 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由K2=,得K2=≈7.8.
附表:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
参照附表,得到的正确结论 ( ).
A.有99%以上的把握认为“选择过马路的方式与性别有关”
B.有99%以上的把握认为“选择过马路的方式与性别无关”
C.在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别有关”
D.在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别无关”
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com