精英家教网 > 高中数学 > 题目详情
已知椭圆C:3x2+y2=12,直线x-y-2=0交椭圆C于A,B两点.
(Ⅰ)求椭圆C的焦点坐标及长轴长;
(Ⅱ)求以线段AB为直径的圆的方程.
(Ⅰ)∵椭圆C:3x2+y2=12,
x2
4
+
y2
12
=1

由方程可知:a2=12,b2=4,c2=a2-b2=8,c=2
2
.…(3分)
∴椭圆C的焦点坐标为(0,2
2
)
(0,-2
2
)

长轴长2a为4
3
.…(5分)
(Ⅱ)由
3x2+y2=12
x-y-2=0

得:x2-x-2=0.
解得:x=2或x=-1.
∴点A,B的坐标分别为(2,0),(-1,-3).…(7分)
∴A,B中点坐标为(
1
2
,-
3
2
)

|AB|=
(2+1)2+(0+3)2
=3
2
.…(9分)
∴以线段AB为直径的圆的圆心坐标为(
1
2
,-
3
2
)
,半径为
3
2
2

∴以线段AB为直径的圆的方程为(x-
1
2
)2+(y+
3
2
)2=
9
2
.…(11分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1
y2
a2
+
x2
b2
=1(a>b>0)的右顶点为P(1,0),过C1的焦点且垂直长轴的弦长为1.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设抛物线C2:y=x2+h(h∈R)的焦点为F,过F点的直线l交抛物线与A、B两点,过A、B两点分别作抛物线C2的切线交于Q点,且Q点在椭圆C1上,求△ABQ面积的最值,并求出取得最值时的抛物线C2的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0),F1、F2是其左右焦点,其离心率是
6
3
,P是椭圆上一点,△PF1F2的周长是2(
3
+
2
).
(1)求椭圆的方程;
(2)试对m讨论直线y=2x+m(m∈R)与该椭圆的公共点的个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

F1(-1,0),F2(1,0),动点M满足|MF1|+|MF2|=2
2

(1)求M的轨迹C的方程;
(2)设直线l:y=
7
7
(x-1)
与曲线C交于A、B两点,求
F1A
F1B
的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点在原点,焦点F与双曲线x2-
y2
4
=1
的右顶点重合.
(1)求抛物线的方程;
(2)若直线l经过焦点F,且倾斜角为60°,与抛物线交于A、B两点,求:弦长|AB|.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在坐标原点O,左顶点A(-2,0),离心率e=
1
2
,F为右焦点,过焦点F的直线交椭圆C于P、Q两点(不同于点A).
(Ⅰ)求椭圆C的方程;
(Ⅱ)当△APQ的面积S=
18
2
7
时,求直线PQ的方程;
(Ⅲ)求
OP
FP
的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点C(4,0)的直线与双曲线
x2
4
-
y2
12
=1的右支交于A、B两点,则直线AB的斜率k的取值范围是(  )
A.|k|≥1B.|k|>
3
C.|k|≤
3
D.|k|<1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知
a
=(2mx,y-1),
b
=(2x,y+1)
,其中m∈R,
a
b
,动点M(x,y)的轨迹为C.
(1)求轨迹C的方程,并说明该轨迹方程所表示曲线的形状;
(2)当m=
1
8
时,设过定点P(0,2)的直线l与轨迹C交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

点P在直线l:y=x-1上,若存在过P的直线交抛物线y=x2于A,B两点,且
PA
=
AB
,则称点P为“λ点”,那么直线l上有______个“λ点”.

查看答案和解析>>

同步练习册答案