精英家教网 > 高中数学 > 题目详情
已知椭圆C1
y2
a2
+
x2
b2
=1(a>b>0)的右顶点为P(1,0),过C1的焦点且垂直长轴的弦长为1.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设抛物线C2:y=x2+h(h∈R)的焦点为F,过F点的直线l交抛物线与A、B两点,过A、B两点分别作抛物线C2的切线交于Q点,且Q点在椭圆C1上,求△ABQ面积的最值,并求出取得最值时的抛物线C2的方程.
(I)由题意得
b=1
2•
b2
a
=1
,解得
a=2
b=1

∴所求的椭圆方程为
y2
4
+x2=1

(II)令A(x1x12+h),B(x2x22+h)
设切线AQ方程为y-(x12+h)=k(x-x1),代入y=x2+h,得:x2-kx+kx1-x12=0
令△=0,可得k=2x1
∴抛物线C2在点A处的切线斜率为k=2x1
∴切线AQ方程为:y-(x12+h)=2x1(x-x1),即y=2x1x-x12+h
同理可得BQ方程为:y=2x2x-x22+h
联立①②解得Q点为(
x1+x2
2
x1x2+h)

焦点F坐标为(0,h+
1
4
),令l方程为:y=kx+h+
1
4
,代入C2:y=x2+h
得:x2-kx-
1
4
=0
,由韦达定理有:x1+x2=k,x1x2=-
1
4

∴Q点为(
k
2
,h-
1
4
)

过Q作y轴平行线交AB于M点,则S△ABQ=
1
2
|QM||x1-x2|

M点为(
k
2
k2
2
+h+
1
4
)

|QM|=
k2+1
2
|x1-x2|=
(x1+x2)2-4x1x2
=
k2+1

S△ABQ=
1
2
|QM||x1-x2|=
1
4
(
k2+1
)3

而Q点在椭圆上,∴
(h-
1
4
)2
4
+(
k
2
)2=1
,∴k2=4-(h-
1
4
)2∈[0,4]

(S△ABQ)min=
1
4
,此时k=0,h=
9
4
或-
7
4

则抛物线方程为:y=x2+
9
4
y=x2-
7
4

(S△ABQ)max=
5
5
4
,此时k2=4,h=
1
4

则抛物线方程为:y=x2+
1
4
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左右顶点分别为A、B.点P双曲线C2
x2
a2
-
y2
b2
=1在第一象限内的图象上一点,直线AP、BP与椭圆C1分别交于C、D点.若△ACD与△PCD的面积相等.
(1)求P点的坐标;
(2)能否使直线CD过椭圆C1的右焦点,若能,求出此时双曲线C2的离心率,若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设x,y∈R,
i
j
为直角坐标平面内x轴y轴正方向上的单位向量,若
a
=x
i
+(y+2)
j
b
=x
i
+(y-2)
j
,且|
a
|+|
b
|=8
(Ⅰ)求动点M(x,y)的轨迹C的方程;
(Ⅱ)设曲线C上两点AB,满足(1)直线AB过点(0,3),(2)若
OP
=
OA
+
OB
,则OAPB为矩形,试求AB方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,抛物线C1:x2=2py(p>0)的焦点为F,椭圆C2
x2
a2
+
y2
b2
=1
(a>b>0)的离心率e=
3
2
,C1与C2在第一象限的交点为P(
3
1
2

(1)求抛物线C1及椭圆C2的方程;
(2)已知直线l:y=kx+t(k≠0,t>0)与椭圆C2交于不同两点A、B,点M满足
AM
+
BM
=
0
,直线FM的斜率为k1,试证明k•k1
-1
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知圆心在第二象限,半径为2
2
的圆C与直线y=x相切于坐标原点O.椭圆
x2
a2
+
y2
9
=1与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)试探求C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知两条抛物线y1=x2+2mx+4,y2=x2+mx-m中至少有一条与x轴有公共点,则实数m的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,椭圆的短轴端点与双曲线
y2
2
-x2
=1的焦点重合,过P(4,0)且不垂直于x轴直线l与椭圆C相交于A、B两点.
(Ⅰ)求椭C的方程;
(Ⅱ)求
OA
OB
的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,抛物线W的顶点在原点,其焦点F在x轴的正半轴上,过点F作x轴的垂线与W交于A、B两点,且点A在第一象限,|AB|=8,过点B作直线BC与x轴交于点T(t,0)(t>2),与抛物线交于点C.
(1)求抛物线W的标准方程;
(2)若t=6,曲线G:x2+y2-2ax-4y+a2=0与直线BC有公共点,求实数a的取值范围;
(3)若|OB|2+|OC|2≤|BC|2,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:3x2+y2=12,直线x-y-2=0交椭圆C于A,B两点.
(Ⅰ)求椭圆C的焦点坐标及长轴长;
(Ⅱ)求以线段AB为直径的圆的方程.

查看答案和解析>>

同步练习册答案